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We investigate the onset of electroconvection in freely suspended sriEcti®m-C*) liquid crystal films.
Compared to nematic liquid crystals the $1i- phase shows in addition a macroscopic electric polarization
within the smectic planes. Describing the SHi-film by a two-dimensional theory we find for low and high
frequencies of the applied electric ac field, respectively, a conductive and a dielectric instability regime, similar
to the case of electroconvection in nematic liquid crystals. Because of the polarization in 6& Bhase an
additional, “subharmonic regime” appears at intermediate frequencies, where all the hydrodynamic and elec-
tric variables are moving with half the frequency of the applied ac voltage at the onset of convection. For some
special but experimentally accessible values of material parameters, geometric dimensions, and ac voltage
frequency also a codimension-three point is found, where the threshold voltages of all three possible regimes
coincide. For dc voltages the generalized Frederiks transition is presented and discussed as far as it restricts the
observation of pattern forming convective instabilities. Both types of instabilities are investigated for dc
voltages to get a fundamental insight into the mechanisms involved as well as for ac voltages to stimulate
experiments[S1063-651X96)00706-4

PACS numbd(s): 61.30—v, 47.20—-k

[. INTRODUCTION nematics the patterns can be visualized by using polarized
light.

Over the last 20 years of enormous progress in pattern Depending on the frequency of the applied voltage there
formation, fluid systems have been used as variable modaire two regimes, one at low frequenciesnductive regime
systems, which allow for quantitative investigations far fromand one at high frequenciédielectric regime with differ-
equilibrium (see, e.g.[1-3)). In the last decade liquid crys- ent thresholds and critical wavelengths for the cellular con-
tals became a paradigm of anisotropic fluids showing pattermection pattern[8,11,13. The former is explained by the
forming instabilities (see, e.g.,[4—6]). Electroconvection Carr-Helfrich mechanism13]: Starting from a uniform
(EC) in planarly aligned nematic liquid crystals is one of alignment of the director a small orientational fluctuation
these intensively investigated anisotropic syst¢fsg]. parallel to the glass plates will induce for applied voltages

In chiral smectic liquid crystal$§Sm-C*) a macroscopic fluctuations of the charge density, since the electric conduc-
polarization exists and SiG* can also be prepared as a tivity is anisotropic as well. In the presence of an applied
quasi two-dimensiondRD) free-standing filn{9], similar to  electric field an inhomogeneous charge distribution leads to
free-standing smectic A filmsL0]. Sm-C* is an example of mass flow, which is coupled to director rotatidfiew align-

a complex fluid with additional macroscopic degrees of free-ment effect amplifying the fluctuations under certain condi-
dom, which give rise to different aspects in pattern forma-tions for the material parameters. This induced amplification
tion. Here we describe a different convective instability and as hindered by the fluid viscositiand the damping of direc-
generalized Frederiks transition, which both are only postor rotations as well as by the orientational elasticity of the
sible due to the macroscopic polarization in €&fi- The director and its fixed orientation at the glass plates. This
film geometry chosen will allow in future experimental in- leads usually to a stationary bifurcation to convective rolls
vestigations a detailed observation of the flow field, which iswith a wave numbeq, at a certain threshold voltagé. .

not always possible for the EC in three-dimensiofD) At least for some standard substances like MBBA, which
nematic systems. shows a nematic phase at room temperature, all important

Most of the electroconvection experiments in liquid crys-material parameters are known and the influence of the ex-
tals are performed on thin layers of nematics placed betweeternal electric and magnetic fields has been studied exten-
two transparent glass plates at a distance of about 2—20fvely in theoretical and experimental work showing qualita-
um. The orientational order in nematics, described by thdive agreement in many casgs-8|. In contrast to Rayleigh-
director[11], can be fixed in those thin layers along specificBenard convection(driven by a temperature gradig¢nin
directions by preparing the surface of the glass plates in aisotropic simple or binary fluids, EQriven by an electric
appropriate manner. Most often the director is aligned paralfield) of the type discussed here needs an anisotropic fluid
lel to the glass platefplanar geometry Applying a voltage  with a rotational degree of freedom coupling the preferred
across the layer the convection sets in above a critical threslalirection to the external field. In addition more control pa-
old voltage and as a consequence of the optical anisotropy edmeters are available, since not only the amplitude but also
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the frequency of the applied voltage can be varied and bedescription is essentially a 2D nematic one with additional
cause material parameters can easily be tailored within terms in the macroscopic equations due to the polarization.
wide range by mixing different liquid crystal compounds. Basic equations are derived in Sec. lll.

In addition to the standard 3D setup for electroconvection In Sec. IV a linear stability analysis of the convection-free
in nematics a free-standing film is a promising candidate tcstate is formulated. For applied ac voltages, mainly used in
gain further insight into the mechanisms of electroconvecexperiments, numerical results are discussed in Sec. VI,
tion. Since free-standing films of nematics are not stablewhile for applied dc voltages a more analytic approach is
smectic liquid crystals films have to be used. In @@hase possible and discussed in Sec. V. The observation of pattern
the directorn is tilted with respect to the layer normak)  forming instabilities is restricted in some cases by a homo-
and its projection onto the layer plane is called ¢hdirector.  geneous reorientation instability known as the Frederiks tran-
It can be treated as a vector, if all equations are made invarkition, We present a generalized “polarization Frederiks ef-
ant under the combined replacements —c andk——k.  fect” including torques due to the spontaneous polarization
For the 2D linearized hydrodynamic equations given belov,g el as to the dielectric anisotropy. Such a reorienta-
this implies that thec director behaves like the director of tion instability from the planar ground state is now possible

1 1 1 H i i 3
tv;/]o-dlrréen%cinal nema:c[|c liquid crlys'gal.t_ln the_ fh'_r@' hfor both signs ofe, (and even fore,=0). A detailed non-
phase(Sm : ) a spontaneous polarization exists in €achy, . analysis of the generalized Frederiks transition is
layer (changing its direction helically going from one layer given in Ref.[16]

to the next. Such a system has several advantages for EC: The known results for nematig1] are qualitatively un-
(i) One can choose the geometry of a free-standing film in qu Y U
a way that allows viewing along the direction, which Cannotaffected by the presence of the macroscopic polarization for

be visualized in the standard 3D nematic sefig, parallel 'OW and high frequencies of the applied electric ac field. At
to the glass platesIn freely suspended films the director mte_rmedlate frequencies, _however, adlfferent_ subharmonic
alignment and the convective flow can be monitored directly’®3ime” appears as the first unstable mode in Sh- Its
using a polarizing microscopéSec. I. threshold voltage increases with decreasing polarization. For
(i) The well defined onset of an instability can serve as aryanishing polarization this regime does not exist and is there-
additional means to measure some elastic and viscous mat@re not accessible in other liquid crystal phases such as
rial parameters in smectic phagdsl], which cannot be ob- nematics or smecticC. Under certain conditions a
tained directly. codimension-three point is found, where the three different
(iii) The macroscopic polarization in S@* can be used instabilities (conductive, dielectric, and subharmonic, all
to modify the system by adding different amounts of chiral-with different wavelengths and different temporal behavior
izing agents. It also provides an additional direct coupling tocompete at onset.
the external field leading to different physical phenomena
(Secs. V and V.
(iv) Fluctuations of the tilt angley of the directorn and Il. GEOMETRIES
undulations of the film surface can give rise to different in-
teresting effects in pattern forming instabilities. In this com-  The geometry of the physical situation of interest here is
munication, however, such effects will not be considered. sketched in Fig. 1. In contrast to the nematic phase the smec-
Apart from the Carr-Helfrich mechanisand its refine- tic phases are organized in layers. In the smeCthase the
ments for EC in anisotropic fluids, there is another mecha-directorn is tilted by a fixed angle/ relative to the layer
nism in fluids, based on surface charge layewiffusion normalk. So the only hydrodynamic degree of freedom of
layers”), that leads to electrohydrodynamic instabilities eventhe director alignment is a rotatiof aroundk. The projec-
in isotropic fluids or isotropic filmsi.e., thin smectic-A lig-  tion of n onto the plane of the smectic layers is thairector,
uid crystal films[10,15)) and to the “vortex mode” pattern which can be observed by polarized light normal to the layer.
above threshold10]. The influence of this mechanism on Due to the existence d&f andc this phase is biaxial.
EC at very low frequencies of the applied field will be dis-  In contrast to the Sn@ phase the SnG* phase shows an
cussed elsewhere. To distinguish the mode explained bitrinsic twist of the director from layer to layer. This addi-
Carr-Helfrich from the “vortex mode” the former is some- tional symmetry breakingQ,,,~C, locally) allows micro-
times called the “domain mode.” scopic electric dipoles to form a spontaneous electric polar-
Since we are mainly interested in the effects of the filmization P, which lies in the planegperpendicular to botk
geometry and of the macroscopic polarization on EC, we arandc) and is twisted, too. We will neglect this twist in the
using here a simplified description assuming fixed smectigollowing thus assuming that the thickness of the freely sus-
layers(i.e., rigid film geometry. As discussed in Sec. lll the pended film is small compared to the pitch of the helielectric
Sm-C* phase, which is biaxial for film thicknesses small C* phase[9], which is typically~1—-10 um.
compared to the pitch, has a larger number of coefficients Thus we consider as the ground stégthout applied
contained in the material tensors such as the tensors for elegoeltage a homogeneous structure, where eRchndc have
tric conductivityoiEj, for the dielectric tensog;; , for diffu-  on average one specific preferred direction, perpendicular to
sion, for the Soret effect, and for elasticity. However, weeach other. Since we assume the layers to be rigid, we can
neglect this in the following and describe a freely suspendedise a 2D model to describe the system. The first and last few
Sm-C* film as being isomorphic to a two-dimensional nem- layers (at the free surfagemight be deformed and might
atic with an additional spontaneous electric polarizattpn  form higher ordered smectic phases. We neglect those effects
which is coupled rigidly to the in-plane director Thus our  here and consider their influence elsewhere.
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FIG. 1. (8 A stack of SmE* layers is shown, for which the
orientation of the directon changes from layer to layer gradually.
(b) Similarly to experiments with SnA-films [17] we suggest the

sketched experimental setup for the study of electroconvection in

Sm-C*-films. A rectangular freely suspended $2ii-film is plot-
ted with the electrodes parallel to thedirection. The length of the
film is assumed to be much longdixj than wide (z).

Ill. BASIC EQUATIONS
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= (sinyr cosd, cosy, sings sing), (3.3
where the angley describes the tilt oh with respect tk.
The charge conservation is described by
dpetdivi=0 (3.9
where g, is the partial time derivative. The electric current
density results from the convective charge transpdue to
the velocity fieldv;), from conduction(due to the electric
field E), and from(dissipative dynamic flexoelectricitydue
to the molecular field, cf. Eq.3.13 below]
J = Peli +0- E +V; (gk“ k) (35)
The electric conductivity is one of the symmetric second
rank material tensors, which in S@{and SmE* locally)
have four different components
0'”=crlkikj+crz(5i]-—kik]-)+0'3ninj+%0'4(nikj+njki).
(3.6

In our 2D description only two coefficients are relevant and
all the second rank material tensors are of the form

(3.7

o =0, 8+ 0.CiCi= 0, 8+ ocicy,
where /=8 —cic; and o,=0— 0o, , With o, =0, and
O'a—0'3SIn21,b For the structure of the dynamic flexoelectric
'[ensorgIJI< see Ref[18].

The (Legendre transformedelectric energy density is

A systematic approach to electrohydrodynamics in liquidgiven by

crystals is presented in Ref18]. The origin of hydrody-

namic variables are either conservation laws or spontane-

ously broken symmetries. In the smedicphase transla-
tional symmetry along the layer normal and rotationa

symmetry about the layer normal are broken and, thus, Iaye(?

displacementalong its normaland in-plane rotations of the
c vector are the hydrodynamic variables in addition to thos
(mass densityp, momentum density, and energy density

€) already present in isotropic liquids. Since the Carr-
Helfrich mechanism requires the presence of free charges,

electric charge 4,) conservation has to be considered.
Since the film geometry we have in mind is approxi-
mately a 2D situation, we already reduce the full three-
dimensional formulation of the equations to a two-
dimensional one. We follow the notation of Reff$9—-27 to

write down the conservation of charge and momentum as

well as the director balance equati@ncompressibility as-
sumed. In the following we assume isothermal conditions
and a single component liquid crystal.

The in-plane spontaneous polarizatien

P=py(sing,0,— cos) (3.1
is always perpendicular to thedirector
=(co0s,0,sin), (3.2

where the angled describes the orientation within the film
plane. Thec director is the projection of tha director

fe:_%eijEiEj_PiEi+EkjiEinCj ’ (38)

Ifrom which the dielectric displacement is obtained as a sum

f the field contributionE;, the spontaneous polarization

P;, and the static flexoelectric pafthe latter will be ne-
é:jlected below
St -
Di:_ﬁzeijEj—’_Pi_ekjinCj' (39)
1

The electric field itselE=Ey— V ¢ can be decomposed into
the external fieldE; (along thez direction in the following
due to the applied voltage

V(1)

Eo(t)=—g~ With V(1)=Voal(t) (3.10

and the gradient of the induced electric potenttal This
fulfills the first quasistatic Maxwell equation cHr: 0, while
the second one, di¥=p, can be used to eliminaie, from
Eqg. (3.5.

The balance equation of the direcfd9,20,23 is written
here in the 2D form
The quasicurrenY; contains a reactive part due to flow and
a dissipative part due to gradients@&ndE and Eq.(3.11)
reads
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1 via the incompressibility conditiori3.18. The pressure is
5 (1N obtained by taking the divergence of E§.15, but it will

not be needed.

We consider a film that is infinitely extended in tle

, (312 direction (or periodic boundary conditionsand we can

therefore treat the& dependence of the linearized equations
showing a coupling of director rotations to rotational flow, to Of motion by a Fourier ansatz
elongational flow(via the dimensionless flow alignment pa-

aCi+ (V- V)&=V Ex+ ik

+1(7\ 1)c;V +1h
2 iYkYj Y1 k

rameter\) and to the molecular fieldh; (via the the rota- $(x,2,1) =sin(qx) ¢(z,1),
tional viscosity y;). The dynamic flexoelectric effect . -
(~§ﬁk) will be neglected below. The molecular field is v2(X.2, 1) =siNax)vA2,1), 4.9

the variational derivative of the free energy dendity o(x,z t):cos(qx)’é(z )

st of i

— = — 4V, o, (3.13 After some straightforward algebra we obtain three linear
5Ci &Ci (QVjCi

equations of motion for the fieldéZ(z,t), v,(z,t) and
7,(z,t). Dropping the “tilde” for simplicity the equation
corresponding to the charge conservation for example is:

hi:

with f=f+f, the sum of rotational elasticitf, [11]

— 1K (dive)2+ LK (c. 2,1 2
fr= 3K (divc)“+ 5K, (c- curle)c+ 3K3z(cX curle) (,3 "y (quz—elVi)atcﬁ—[ean(t)—po]qata
2_ 2 _ _
and the electric energy densify from Eq. (3.8). The mo- +(010°~ 0, V3) d—{e iEo(t) ]+ oaEo(1)}q6=0.
mentum conservation, (4.2

In order to rewrite the equations in a dimensionless form we

pm(dr+ (V- V)oi =V (ai+of)) +(V-D)E;, (3.15 rescale all lengths by the film width, i.e.,

includes the electric volume force on induced and spontane-

ous polarizations in the media due to the definition of the X=X';- 4.3
dielectric displacement in Eq3.9). The reversible part of
the stress tensor is While frequently time is scaled by the charge relaxation time

e, /o, , we choose instead the following rescaling for time,

R__ 1 t 8
i = = P& — 2 ([N +1]8)C;+ [N — 1] &jci)hy., 31 voltage, and mass density, respectively,

d2
wherep is the hydrostatic pressure. The irreversible part of t=t’ro=t’%z, (4.9
the stress tensor [20] 1
D Kl 1/2
O-ij=2V2Aij+ 2(V1+ V2_2V3)CiCjCkC|Ak|+ 2(1/3_ V2) V:V’,ﬂ-(_) , (45)
€
X (AiCkCj+ AjkCiCy) + (V5= v4+ ) 6 CLClAK » ,
, M1
(3.17 Pm= me_1 (4.9
where 2Aj;=Vv;+ V;v; has been used and incompressibil-
ity, so, if the film widthd is varied, only rescaled conductivities
o} ,0], andp, must be changetf. Sec. VI D.
divww=0, (3.18 For the variables this implies the dimensionlégsmed
forms
has been assumed. The thermal degree of freedom will be
neglected, since generally it does not play a role in EC. , e | ?
P'=¢ K, (4.7
IV. LINEAR ANALYSIS g
A. Linearized equations v£=vz—y1 , (4.9
K17T

In the following we will investigate the linear stability of
the homogeneous and convection-free planar basic state 0'=0, 4.9
#=0,v=0 and$=0 (i.e.,cis in x andE in z direction,
which is stable at voltage¢ below a certain threshold value. While g, V,, andd; scale inversely to Eqg4.3) and (4.4,
Therefore we linearize our system of equations around théespectively. In order to simplify the resulting equations we
basic state and consider the dynamics of the small deviatiorigtroduce the dimensionless abbreviations
0, v, and¢. Due to the 2D description there are no gradients 42
in they direction and all vector fields have vanishipgom- ol =0y =2 n
ponents(i.e., vy,=0). The component, is expressed by, ' T e Ky

(4.10



d
pé):pO;(eLKl)i(llz)- (4.11)

Dropping the primegverywherdor notational simplicity,
the linearized dimensionless equations then read

€ 5 2 €a
0= - d =V7 |+ —€—V(t)+p0 qo0
1 1

- ?[atvan—oavm)qo,
1

(4.12

T(o@P =0 Vo) bt

€, 1 ) 5
0=—9,0+| po— Zv(t) Q¢_a(012q +a3Vi)v,

0, (4.13

€ K
+(€_aV2(t)_p0V(t)_ Al
L 1

0=pm(62—V2)dw ,+ A axq?+ a3V?2) 4,0

+ ( vi- :—qz) V(1) B | VA1) - poV(t))q39
L €

+ (9" = 279°V 2+ V3, (4.14

In Eqg. (4.14 the molecular fieldh; has been eliminated
via Eq.(4.13. The external field&E, has been replaced by the
external applied voltag®, with V=E, for dimensionless
guantities. In addition we have used the abbreviatiins
order to make contact with the notation in nematic) HCthe
dimensionless rescaling:

2012: _l_)\,
2as=1-\,

V3 1 2
=—+—=(1—-N\)%,
= 4( )

(4.15
_v 1 2
M=, (14N,

7 1( + )+1<1 \?)
=—(vituvo,—v —(1— .
Y 71 1 2 37Ty

We are left with three homogeneous linear partial differential

equations ford, v, and ¢. They are similar to the linear

equations for planarly aligned nematic liquid crystals
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similarities with the well known Matthieu equations. In the
following we assume additionally

V(t+T/2)=—V(t). (4.18

B. Boundary conditions

We consider films infinitely extended ix direction (or
take periodic boundary conditiondn z direction the film is
confined between electrodes locatedat* (7/2), with the
following consequences. The velocity perpendicular to the
electrodes has to vanish at this surface:

Uz( iE =0. (4.19
In addition stress-free boundary conditions,
2 a
IZv, iE =0, (4.20
or rigid boundary conditions
a
dU, tE) =0, (4.2)

are assumed, where the latter case is closer to the real ex-
perimental conditions.

At the surface we assume the directdp lie, on average,
in one direction c=(1,0,0)] and the induced potential to be
Zero:

(4.22

C. Symmetries and Floquet analysis

The solutions of the linearized Eqg§t.12—4.14 can be
classified with respect to their symmetry properties under
spatial reflections and translations in time. Choosing the line
z=0 to be the middle of the film, i.e5 #/2<z< /2, where
7 is the rescaled film width in Fig. 1, E¢4.16 is invariant
under a reflection with respect to tkelirection.

Z— —Z. (4.23
This symmetry of the equations together with the boundary
conditions chosen allows us to characterize all solutions to
Ibe either symmetricu(z)=u(—2z), or antisymmetric,
u(z) = —u(—2), with respect taz. This would not be pos-
sible, if we had kept the flexoelectric effect relatec'EtR in

[12,23, but contain, in addition, the effects of the polariza- Egs. (3.8) and (3.9) [12] and its dynamic analog- §ﬁk in

tion pg. Equationg4.12-4.14 can be written in matrix form,

B(t,V,) - du(z,t)=L(t,V,) - u(zt), (4.19
with the (formal) vector field:
u=(¢,6,v,). (4.17

Egs.(3.5 and(3.12.

For periodic voltages as given in E@.18, the linear
homogeneous Ed4.16) is invariant under the time transla-
tions:

t—t+nT (n integer, positive.

(4.29
According to the spectral method of Floquet4] this

We always assume dc or periodic ac driving voltages. Fofeads to a general solution of the form

periodic voltaged/(t)=V(t+T), with T=27/w, the matri-
cesB andL are periodic in time and Ed4.16) shares some

u(z,t)=u(zt)e",

(4.2
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with the Floquet exponent and the periodic functioni. (period doublell casen=2 gives stable solutiong24]. In

Due to the symmetry4.24) the solutionsi are grouped ac- this state the basic time translational symmeteyt+T is

cording to the integers into harmonic onesr(=1), subhar-  broken spontaneously. Therefore, we make the ansatz

monic ones f=2), etc. The harmonic ones are invariant

under a singleT-translationt—t+T, i.e., G(t)=0(t+T), - O]

while the subharmonic ones change sigt)=—0(t+T) UZ,E_N u,(z)ex;{n Et)' (4.28

under that translation. The full solutiongt) do not have

these symmetries because of the Floquet multiplier @}p( which contains both, th&-periodic, harmonicl(= +2), and

However the prefactors produced by a time translation, i.ethe 2T-periodic, subharmonicl & +1) solutions as well as

exp(T) for a T translation, are irrelevant, since the ampli- all their higher harmonicsl(= even or odd, respectively

tudes of the solutions(t) are not determined by the linear, and even time independent ones.

homogeneous equatiqa.16). The dependence onis expressed by a complete set of
The Floquet exponent is a function of the external orthogonal functions according to the boundary conditions

(Vo, w) and internalmateria) parameters of the system and chosen. Thez dependence o#(z) as well asf(z) can be

depends on the transverse wave vedtolt governs the lin-  described appropriately by an expansion with respect to

ear stability of the basic, nonconvective state against inhotrigonometric functions:

mogeneous perturbations which is stable, if Ref)<O0,

N

and unstable for positive growth rates et 0. Thus from cogmz, m=13}5, ...
the condition fm(Z)= sin(mz), m=2,4,6, .. B (4'29)
R a(Vo.0, ...)]=0 (4.26 Each of it fulfills the boundary conditions in E¢.22).

For stress-free boundary conditio®20 this expansion is

the parameters can be determined which separate the Iineé\'rso appropriate for the velocity field.(z) and Eq.(4.16 is
stable regime from the unstable one. Equati#26) allows solvedpgy P y field(2) q.4.16

for instance the determination &, as a function ofg, the

so-called neutral curv®y(q) at which the real part of the N M o

Floquet exponent changes its sign. The absolute minimum of a= > > Ulmex% il —t) f(2). (4.30
Vo(9), Ve=Vo(0.), gives the threshold for the onset of con- I==Nm=1 2

vection in linearized stability analysis. - .
y y The (vecton coefficient matrixU;,= (Pim,Tim,Gim) con-

For vanishingp, (Sm-C phase as well as forT periodic ; .
and antisymmetric ac voltagdsf. (4.18], e.g., sinusoidal sists of three components according to the three components
N T mof U=(¢,0,0,).

square, or triangular wave forms, there is an additional sym= o .
q v y For rigid boundary conditions the ansdtz,(z)} for the

metry with respect to time translations, since E4.16 is LD ;
invar)i/ant underpthe replacement E416 velocity field does not satisfy Eq4.21) and has to be re-
’ placed by symmetric and antisymmetric Chandrasekhar

P —¢ functions[10,25,
T
t—tt o, f O |-yl 0], (4.27) cosh\wz/m)  cog\p2/ ) 13
v, v, @ coshi\,/2) cog\,/2) ' e
rm(2)=94 .

wherey is an irrelevant constant. This symmetry requires the SintA w2/ ) _ SiN(Am2/ ) —24.....
solutionsii to be harmonic, since by applying.27 twice sinh(Ay/2)  sin(Ay/2)
(i.e., after aT translation U is mapped to itself. Thus, if Eq. (4.3)

(4.27) is valid, subharmonic solutions are ruled out. The up- . - .
per and lower signs ifi4.27 belong to two different solu- where in\, the roots of the characteristic equations
tions, corresponding to the so-called conductive and dielec-
tric regime, respectively, known from EC in nematic liquid
crystals[11]. In Sm-C* however, this symmetry4.27) is
lifted, sincepy#0. In that case subharmonic solutions are
possible and the two harmonic regimes can still be discrimi
nated, but they are no longer purely “conductive” nor
purely “dielectric.”

tanh(\/2) +tan\/2)=0~s\1 A3, ..., (4.32
coth(A/2) —COt(N/2)=0~+Ap,Ng, ..., (433

‘are collected in an alternating manner. This leads to rigid
boundary conditions instead ¢4.30 to the ansatz fov,:

N M
w
D. Mode ansatz vz(x,z,t)=e"‘|72_N le G,mexy{ il Et rm(2).

For the actual determination of the eigenvalueswe (4.39
transform Eq.(4.16 into a system of linear algebraic equa-
tions by choosing an appropriate representation of the peri- Inserting the mode expansiort$.28 and/or (4.34) into
odic part of the solutiort4.25 function, G(z,t). Most often,  the linearized equatiof.16) and projecting onto the respec-
U is assumed to have the same period as the driving voltagéive eigenmodes exip/2t)r(2) and expil (w/2t)f(2), we
However, bifurcation tonT-periodic solutions 1§ integer, obtain algebraic equations linear in the coefficients
>1) is also possible, where generally only the subharmoni® , Tjm.Gim -



53 ELECTROCONVECTIVE INSTABILITIES IN SmE* LIQUID ... 6107

Defining a M (2N + 1)-dimensional vectoK containing favors an alignment of the director field parallel or perpen-
all components ofJ,,, in an arbitrary sequential order, e.g., dicular to the applied field depending on the sign of the
susceptibility anisotropy €,>0 or €,<0), while orienta-
X=(P_n1,P-n+11 -+ Pn1Pon2 Ponsror o tional elasticity works to preserve the original orientation of
the director field.
This type of instability is also present in smecGcfilms
Tum:Gongyroooy oo Om)s (4.39 (po=0) and the critical voltage for an electrically driven
splay Frederiks transition can be obtained from Ey13
the set of linear algebraic equations is of the following sym-yith q=y,= $=0 and 6= 6 cosg) reading(in our dimen-
bolic form: sionless units

0B - X+iwB, X=L;-X. (4.36 Vi=¢, le,. (5.9

PN,Z!"'!"'!PN,M!TfN,lv"'i"'l

Here the matrice8,, B, andL, are 3x3 block matrices,
where each block itself is Bl (2N+ 1) X M (2N+ 1) matrix. A threshold value and therefore an electrically driven
The matrice$3 ; andL ; result fromB andL from Eq.(4.16), splay Frederiks transition exist only for finite positive values
respectively, whileB, contains elements of botf® andL,  Of €5, since in our basic statel E.
because of the explicit time derivative of the external voltage In this case jp,=0) the sign of the dc voltage is arbitrary,
contained in Eq(4.12. since an applied electric field is completely equivalent to
Since mixed projection integrals of even and odd func-—E. Thus the threshold for the splay Frederiks instability
tions in space or in time, respectively, vanish identically, thedepends onv3 only. This behavior is changed qualitatively
system (4.36 will only contain equations coupling even in smecticC* due to the presence of the polarizatién
components to each other and odd components to each oth&ihere is an orientational effect of the field on the polariza-
In the time expansion even and odd corresponds to harmont@mn andE parallel toP (V,>0) is energetically preferred to
and subharmonic modes while in the expansion inzft®-  the caseE antiparallel toP (V(<0) (cf. Fig. 1). Thus, even
rection even components are linked to antisymmetric funcfor vanishing dielectric anisotropy,=0, one finds an ori-
tions and odd ones to symmetric functiojsf. Eg. entational transition of the Frederiks tyfifpolarization Fre-
(4.29,4.3)]. Thus the eigenvector of a marginally stable deriks effect’) at the threshold/.= — 1/p,. This instability
mode contains components out of one of the followingonly occurs, if the spontaneous polarization and the applied
modes only: electrical field are antiparallel to each oth&fy,&0).
In the general case, i.e., for finite valuesmf and ¢,,
X={(Unarm,antl»(Unarm,synl s (Usuoh,antl s (Usuion,synl } - both orientational torques are present and the threshold for-
(4.37) mula of the general Frederiks instability €v,=q=0) due

In Egs. (4.28,4.30,4.3%we have already truncated the infi- {0 @n applied dc voltage is
nite sums to finite ones taking into account onN21 tem-

poral andM spatial modes. This approximation is justified as €, Po €, \1?

the amplitude of the corresponding components decreases V= 2e, 1= 1+4p§q (5.2)
extremely fast foN>8 andM > 6 (the Galerkin approxima-

tion). All matrices depend on the yet undetermined trans- ] ) » )
verse wave vectog and on the amplitud¥, of the applied This formula.conta!ns both, the traditional fplay Frederlks
voltage, which we will take as sinusoidal(t) = V,cost) effect (due to d|,('alectr|c torquesand_the new polar|zat|on
or constantV(t)=V,, in the following. Frederiks effect”(due to ferroelectric torquesSince polar-

ization and director are rigidly coupled, both effects can ei-
ther enhance each othi@or V,<<0 ande,>0) and therefore
reduce the threshold voltadef. the lower dotted line in Fig.
Before presenting the results for applied ac voltages ir2(b)], or counteract each othéfor V>0 ande,>0) in-
Sec. VI, we will discuss the special case of a time-creasing the threshold voltagef. the upper dotted line in
independent applied voltag¥(t)=V,. Although experi- Fig. 2b)].
mentally less important than the ac case, because of charge In contrast to the traditional splay Frederiks transition that
injection problems, it nevertheless is simple enough to disdoes not exist foe,<0, the general Frederiks transition can
cuss the influence gf, on the nature of the instabilities.  exist even fore, <0, if V,<0 (external field antiparallel to
the polarization and if py exceeds a critical valupy>p.,

A. dc polarization Frederiks effect where

V. dc INSTABILITIES

In addition to EC instabilities d.# 0), nematic liquid B 12
crystals can also become unstable against a purely orienta- Pc=(—4e€al€e )" (5.3
tional instability, if subject to external electrior magneti¢
fields. This well-known Frederiks transitiddi1,26 has the In that case the destabilizing effect due to the polarization
minimum of the neutral curve aj.=0, describing a static overcomes the stabilizing effects due to the dielectric anisot-
reorientation of the directofwhich is homogeneous in the ropy. This range is shown in Fig.(l3, where below the
x direction without any flow. The mechanism is based ondotted curve the planar initial configuration is unstable
the dielectric(or magneti¢ susceptibility anisotropy, which against homogeneous reorientation of the director field.
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FIG. 2. (a) The neutral curve foe,= +0.6e, without polariza-
tion (pp=0) and with a polarizatiop,=0.2 andp,=0.5 parallel FIG. 3. The neutral curvéa) and the comparison of convective
to the applied field Yy>0). In (b) the threshold of electroconvec- and Frederiks instabilitiegh) just like in Fig. 2 but for negative
tion (solid lines is compared with the that of the Frederiks transi- dielectric anisotropy,= —0.38,, wherep.=0.54.
tion (dotted line$ as a function of the polarizatioffior the positive
value of e,=0.6¢).

it contains a linear term proportional fi,. Thus, in contrast
B. dc electroconvection to the smectidz case, in the smecti€* phase the neutral
curve for dc EC is no longer symmetric with respect to
—>_V0.
This simple threshold condition also explains, why for

The existence of a finite polarization also has a profoun
influence on the dc electroconvective instability. Without a 0

polarizationp, (smecticC phasg the sign of the dc voltage finite py values the range of existence of the dc EC is larger

is arbitrary and the threshold for the dc EC dependsvén than for zerop,. Real values foi/, are only possible, if

only. This behavior is changed by the presence of the polar-2 2
ization P in smecticC*. Now E parallel toP (V,>0) is Poba> — 4babs. Thus for zerap, the produck; bs must be

energetically preferred to the casé antiparallel to P negative, while for large enoughy also positive values of

: Lo ; . b,b; lead to an instability threshold. In particular, for a large
g\tg)b<leoi)n (t%fé E?rﬁ;)r ;?,ﬂ;ﬁgﬂ%htgstirmﬁeﬁgi';S(')tr?;e 'II'Tu:gOE; é—:-/nough and destabilizing polarizatidg antiparallel toP,
can expect the de EC threshold to incredsecreasgwith 0<0), an electroconvective instability is possible, even if

S €,=<0 ando,<0. In this situation the planar basic state is
po for V>0 (<0), which indeed has also been found nu- 2 -8 : i . .
merically for rigid boundariegcf. the solid curves in Figs. stable within the simple Carr-Helfrich mechanismy, €0),

2(b) and 3b)]. but the destabilization due {m, overcomes the stabilization

This can also be understood analytically. Assuming Stague to negative dielectric and conductive anisotropies.

tionary instabilitiega Hopf bifurcation has not been found in
our numerical studigs we get a quadratic equation for
Vo(Q), i.e., b1V§+ b,peVo+bz=0, which is written down To predict the behavior of a smectic film under external
explicitly in Appendix B for the special casg,=0 and the electric fields, one has to take into account both, a Frederiks
stress-free boundary conditions. The interesting point is thalype (q.=0) and an EC instabilityd.>0).

C. dc electroconvection vs Frederiks transition
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For po=0 and large positive values ef, the splay Fred- conductive dielectric
eriks transition always has a lower threshold than electrocon- ® =280 ® =320
vection(see, e.g., Ref23]). However, the threshold for the /\

. L. . . . V(t)
splay Frederiks transition diverges in the lindf— 0, but \/ \/
below an intermediaté.e., crossovervalue ofe, EC has a
lower threshold than the Frederiks transition.
For finite p, the competition between both instabilities is O\

shown in Figs. 2 and 3 for positive and negateg respec-
tively. In these and the following figures the EC curves have
been calculated using realisticgid) boundary conditions, oM
but there are no qualitative differences to the case of free
boundary conditions.

For a positivee, and forVy>0 there are two minima in
the neutral curvgFig. 2@)], where the EC thresholgat fi-
nite q.) is lower for large values ofpy. In the case of
V<0 and largepy the minimum of the neutral curve at
finite g, ceases to exist and ttigeneral Frederiks transition
is the only possible instability. At. small val_qes p§ there is scopic polarization The temporal variations of the fields at the cell
a crossovgr_ between the Frederiks instability and EC, wher enter g=0) are plotted in arbitrary units for the conductive
the two minima in the neutral curve correspond to the Same,, — 280) and dielectric regimes(=320).
value ofV,. At this codimension-two point the two instabili-

ties with ;=0 and >0 coexist and nonlinearities, ne- electric charge density while the hydrodynamic variables are
gIeCted in the calculation of the threShOld, will deCide, WhiCheffective|y constant. Therefore the regime is called conduc-
structure actually survives. This is found nUmerica”y to taketive in agreement with the Carr-Helfrich exp|anati0n for the
place atp,=0.25 andV.>0 for €,=0.6e5, While for a  npematic case. In the second, dielectric case, the excitation is
smaller (but still positive dielectric anisotropy this point is just the opposite with harmonically oscillating lowest modes

V(1)

FIG. 4. The time dependence of the field variables is shown at
the onset of electroconvection in the SIrphase(without macro-

shifted into the domain witlv, <0. for the hydrodynamic variableg andv, and a constant elec-
A slightly different scenario is found in the rangg<<0.  tric variable (in the lowest mode
If Vo=>0 or if Vo<0 andpo<p. [defined in Eq(5.3)], there For small values of the parameter d? the higher order

is only EC and no Frederiks transition possifief. the  (tempora] modes are considerably excited at the onset of
curvespy=0 andpy=p.—0.04 in Fig. 3a)]. Forp>p. (@and  instability, as can be seen from Fig. 4. Increasingi? there
V(<0) a Frederiks transitiogminimum atq=0) is pos-  remain large contributions from these higher harmonics only
sible, while EC(minimum at finiteq) seizes to exist fop,  near the transition from the conductive to the dielectric re-
slightly abovep (po=p.+0.07 in Fig. 3. However, imme-  gime[5,27).
diately at the point, where the Frederiks transitions starts to |n Fig. 5 the neutral curves for the clasSpfm sy, are
exist, it has a lower threshold than H€f. in Fig. a) the
dashed, disconnected curve with two different mininTdus
the two threshold curves do not cros® codimension-two
point) and atp. the (absolute value of thethreshold voltage i
jumps down from the EC value to the Frederiks value. Of 0r
course, for a different choice of material paramet@rs.,
o, or €,) the Frederiks threshold could be higher than the 0 1y .
EC threshold ap. leading at somep,>p. to a crossover T 0.=0 "y
(codimension-two pointbetween EC and Frederiks transi- OF g, 0 k
tion quite similar to the case of positiug, . Vo h
30 7
VI. ac INSTABILITIES "

_ . 2| : ' P
A. Harmonic regimes ' 2, T/ pO =5

70—

- conductive = = - -
subharmonic |
dielectric =+« veeer

A

"

For po=0 (smectic€ phase the harmonic solutions of of "
Eq. (4.37), I=even, (Unamants Unarm,synd are each decom- : : :
posed into two independent clasgealled A and B in[12]) q
representing the conductive and dielectric regimes, respec-
tively. This is due to the additional symmetry described by i 5. Neutral curves/o(q) are given for two different values
Eq. (4.27, which implies that on one brandA) the excited ot the polarization p,=0 and 5) at the frequenay =180 of the

modes are only the odd harmonic ores2,6,10, ... of the  gpplied voltage. The uppélowen curve in the conduction regime
electric variable ¢ and the' even harmonic  ones (dashed linesand the lower(highe) one in the dielectric regime
1=0,4,8, ... of the hydrodynamic variabl@sandv,, and  (dotted line are calculated fop,=0 (po=5). For finite polariza-

vice versa for branch B. In the first case, the lowest mode aions the additional subharmonic regime occurs at intermediate q
the onset of instability consists of a harmonically oscillatingvalues(solid line).
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FIG. 6. Three different instability regime&) The conductive,
(b) the subharmonic an¢t) the dielectric regime. The solid lines
show the neutral curve¥,(q) for branches symmetric under
reflection Eq.(4.23 while the dash-dotted lines belong to antisym-
metric solutions. Here the parametefapplied ac frequency
=180 and spontaneous polarizatipy=5) are chosen such that

the lowest minimum of the neutral curves belongs to the conductive

regime.

plotted for two different values of the polarizatiopg=0
and 5 at the frequency=180 of the applied voltage. For

vanishing polarization the neutral curve has two branche

with one minimum each, where the dashed curve belongs

RIED, PLEINER, ZIMMERMANN, AND BRAND

V(1)

FIG. 7. The time dependence of the field variables is shown at
the onset of EC in the Sr6* phase(with macroscopic polariza-
tion). The fields at the cell centez€0) are plotted in arbitrary
units for the frequencw =390 of the applied voltage. The dynam-
ics of the system is P periodic only, although the driving force
V(t) is T periodic.

B. Subharmonic ac regime

The subharmonic regime corresponds to the class
(U subn,syn Of solutions, where at the onset of convection all
variablesg, 6, andv, are oscillating with half the frequency

|=1) and appropriate higher harmonids=3,5,7,...) of
e applied voltage. In this regime the temporal behavior of

the conductive regime and the dotted curve to the dielectrig,o fields¢, 8,0, is shown in Fig. 7 at threshold and at the

regime.
For finite values of the spontaneous polarizatipg, the
symmetry of Eq.(4.27) no longer exists and all harmonic

cell center g=0). For the chosen parameter set higher har-
monics are considerably excited.
For po=0 the subharmonic regime is strictly prohibited

modes are coupled. This means, for instance, that the evajy the symmetry(4.27). The absence of this symmetry for

harmonic modes|&2,6,10,...) of theinduced potential

finite polarizations in turn allows for subharmonic solutions

¢ are also exited in the conduction regime. The amplitudegFigs. 5,6, which break spontaneously the discrete time
of those additionally excited modes increase with increasingranslational symmetry of the driving voltag& periodicity),
values ofp,y. The same holds for the odd harmonic modes insince they are only 2 periodic (subharmonit

the dielectric regime. Similar changes occur for the two other

hydrodynamic variable® andv,.

Changing the frequency the three minima of the neutral
curve(Fig. 5) are shifted relative to each other, such that any

Despite the polarization induced excitations of even andf them can be the absolute minimum, i.e., the threshold
odd modes we still call the two regimes conductive and di-V, for a certain frequency range. The critical threshold volt-
electric, respectively, due to their origin. With increasingages,V.(w) and the associated critical wave vectqgw)

values ofpy the minimum of the neutral curve in the con-
duction regimgdashedlis shifted to lower, and the dielectric
one (dotted to higher, critical voltages and critical wave
numbersg. . For higher values opy a new minimum of the
class Ugyph,syn Occurs(Fig. 5), which will be discussed in
Sec. VI B.

are plotted for each regime as a function of frequeacin
Fig. 8 for two different values of the polarizatigy.

For sufficiently high values op, the neutral curve be-
longing to the subharmonic regint¥ gy sy has the lowest
minimum for a certain frequency rangsolid line in Fig. 8.

It always appears at intermediate frequencies, between the

For nematic liquid crystals it has been shown that theconductive and dielectric regime. Figi3 shows the critical

branches belonging tQU pymand have always a higher
threshold than those fdtJ pam syr) (Se€ Refs[8,12,27 and

references thereinThis is still true for finite polarizations in
the C* phase(Fig. 6). In addition also the antisymmetric
subharmonic branclU gp, 2nd Shows a higher threshold
voltage than the symmetric subharmonic oftgsypn syr)-

Thus all the antisymmetriédash-dotteg solutions are not

involved in the onset of convection and will not be consid-

ered any further.

wave numberg, as a smooth function of the external fre-
guency within a given regime, but with discontinuous jumps
when the marginal stability switches from one regime to an-
other. Again only two regimes are present foy=0, but
three for large enough,.

Although there is no simple mechanism that could ex-
plain, why a subharmonic regime exists as the marginally
stable solution, the following remarks may help the intuition.
With py=0 the sign ofV, is undefined and it is rathefé
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i FIG. 9. Codimension-three point: At the minimal value of the
P0= O polarization p,=4.5 for the parameters chogefor which the sub-
""""" 1 harmonic regime exists, the three different regimes have equal criti-
q.7} ) cal voltages at a certain external ac frequeagy=361. This is a
¢ codimension-three point.

sl —_—p.=5 | lower threshold than the dielectric one. With further increas-
0 ing frequency also the threshold increases and therefore at
large frequencie¥? dominates the&/ effects and the dielec-

al j tric regime is favored. Using these qualitative arguments the
subharmonic regime can only occur as an additional regime
between the conduction and the dielectric regime.
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C. Codimension-three bifurcation

The value ofpy can be seen as a third control parameter
FIG. 8. Onset of instability: (8 The critical voltages of the system in addition to the amplitud¥,, and fre-
V.=V(q.), (b) the critical wavelengthg,, of the three regimes as quency,o, of the applied voltage. For large polarizations the
a function of the applied ac frequency. For low or vanishing polar-subharmonic threshold curé.(w) intersects both, the con-
ization po there are only two regimes, while fq,>4.5 (for the  ductive and the dielectric threshold curves, at two
parameters chosgthere is in addition the subharmonic regime at codimension-two pointgindicated in Fig. 8. If p, is low-
intermediate frequencies. At those frequencies, where the instabilitgred, these two codimension-two points approach each other
switches_from one regime to the other, the critical wave vectorgq finally merge(cf. Fig. 9. We have found numerically
shows a jump. that this coalescence happens just at the point, where also the
conductive and dielectric thresholds intersect. This
that governs the instability thresholds. A finjig, however, codimension-three point is shown in Fig. 9 with the param-
introduces contributions linear M, as has been shown ex- eter value;=4.5, w3=361,V;=41.5 and for the material
plicitly in the dc casgSec. V). Thus for sinusoidal voltages parameters given in Appendix A. Here all three regimes co-
V(1) the fields may oscillate either with half the frequency of exist and a competition of three solutions having different
V(t)? or V(t), depending on the influence of the different wavelengths should be seen in experiments. et p; the
destabilizing forces. For very large threshold voltages, suclsubharmonic regime disappeafShe actual value op; de-
as in the dielectric regime, contributions in the director re-pends obviously on the material parameteiiis scenario
laxation time being quadratic in the voltag¢’ win over  seems to be generic, since near this codimension-three point
those effects linear iN. At small frequencies in the conduc- the threshold curve¥ () are nearly straight lines, where
tion regime the threshold is relatively small and the impuritythe conductive and dielectric curve have the largest and
charges can follow the action of the external field immedi-smallest slope, respectively.
ately while leaving the director orientations roughly un- Increasing however the polarizatign, well beyondps
changed. In both cases the fields oscillate in a subharmonitie cutoff frequency of the conductive regime is shifted to
fashion with respect t&/2. higher values and the threshold and critical wavelength at a
The frequency range of the conduction regime is alwaydgixed frequency is lowered further. The subharmonic regime
bounded from above by the inverse charge relaxation timeappears always after the cutoff of the conductive regime for
Beyond that frequency the charges get out of phase and figh values op, and is extended to much higher frequencies
immediately beyond that frequency the contributipg¥ to  at the cost of the dielectric regime. E.g., fag=50 the cut-
the director relaxation time are more important than thoseff frequency is atw~13000 while for the conductive re-
proportional toV? then the subharmonic regime may have agime we find typically rather small threshold values
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FIG. 10. The existence range of the subharmonic regime at vari-
ous ac frequencies as a function of the dielectric anisotropy for
po=5 and o, =133 fixed [both in dimensionless units cf. Egs.
(4.10 and (4.11)] and €, =5.25. The dashed line describes the
codimension-two line between the conductive and the dielectric re
gimes forpy,=0.

FIG. 11. The solid lines indicate the existence ranges of the
different instability regimes at various ac frequencies as a function
of the conduction anisotropy-, for po=5 and o, =133 and

€, =5.25;e,= —0.38. The dashed line describes the codimension-
two line between the conductive and the dielectric regimes for
Po=0.

0.~0.15 andV.~0.5 atw=200. The observation of such quency of the conductive regime increases approximately
very small wave numbers should not be confused with théroportional too, while the dielectric regime is only slightly
Frederiks transition d=0, which does not occur for affected. This is shown fop,=0 by the dashed line in Fig.
€,<0). 11. Similar behavior is found for a finite polarizatigsolid

lines) although foro, /o, <0.55(for the parameters chosen
the subharmonic regime squeezes in between the two other

) . regimes. The threshold voltages of the conductive and the
The frequency range, where the subharmonic regime hage|ectric regimes diverge by approaching—0 according

the lowest threshold, depends not only on the polarizatioRg the Carr-Helfrich mechanism causing smaller values of the
but also on the values of the other material parameters anghisotropyo, to favor the subharmonic regime. Furthermore
on the film width. To design an experiment for investigatingihe subharmonic regime exists even fslightly) negative
the subharmonic regime it is helpful to know, for which geo-,5iues of the anisotropy, . The same has been found for an
metric and material parameters the subharmonic regime Cadhplied dc voltagdcf. Sec. V Q. Increasingp, will again

be observed most likely. All results described in the previouggaq to a larger frequency range of the subharmonic instabil-

sections of this work have been calculated for the value§ty and the subharmonic regime will exist to even larger
given in Appendix A. The electroconvective instability is \5,es of, than indicated in Fig. 11.

especially sensitive to changes in the electrical anisotropies (i) In Sec. IV A the scaling was chosen such that varia-
ga ando, [12,23,27,28 Therefore we consider the influence iqns of the film widthd do not change thédimensionless

of variations of these quantities on the existence range of thgiscosities and elastic constants, which are rather difficult to
sub.harmomc. regime. . ) vary experimentally. This means that mainly the same com-
(i) A scaling of the two dielectric constants | by the  5inds can be used for different film widttis On the other
same factor will .o.nly shift the thre;hold voltage due t0 Ed.pand the frequency of the applied AC voltage as well as the
(4.5. Large positive values o€, will not lead to EC fc  spontaneous polarizatign, (by adding chiral moleculgsor

#0), since the threshold for the Frederiks transition becomeg,q glectric conductivityr (by adding dopaniscan easily be

the lower one. Foe,<0 changes ofj/e, (or ea/€,) have  4giysted in an experiment. le., the influence of the film
rather subtle implications, which cannot be understood fromyiqin g showing up in the(dimensionless quantities

the scaling of the Eqg4.12—-4.14 alone, but numerical cal- o~d?, po~d, andw~d? [cf. Egs.(4.4), (4.10, and(4.1D)]

culations have to b.e used. Thus we have computed threskz , pe balanced by appropriate changes of the physical quan-
olds curvesVc(w) with py=5 for different values ok, (cf.  ities. Varying both, the film width and the material param-
Fig. 10. The different regimes are separated bYeiers, the threshold voltage, the critical wavelength and the

codimension-two lines, which intersect at the codimensionTrequency can be brought into a range accessible to experi-
three point. The range of the subharmonic regime wideng,aonts.

with €, becoming more negative, while abowg=— 0.3 (for

the parameters usgthe subharmonic regime ceases to exist.
(i) We investigated the dependence ap by keeping

o, constant and changing the valuexf. Increasing values In this paper we have analyzed the linearized electrohy-

of o, enforce the ability of space charges to follow the ap-drodynamics of a freely suspended sme@itcdiquid crystal

plied alternating field up to higher frequencies according tdilm. We have neglected the biaxiality of this phase and have

the Carr-Helfrich mechanisrfil1,13. Thus the cutoff fre- described it as being isomorphic to a two-dimensional nem-

D. Parameter dependencies

VIl. CONCLUSION
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atic with an additional spontaneous polarization. The quali- TABLE I.
tatively different effects due to the spontaneous electric po :
larization are the main topic of this work. We predict Parameter Symbol Value Unit
electroconvectmn for thm_smectlc films as already knowng,stic constants K, 6.66 102N
from bulk nematics, but with some completely new and ex- K, 42
perimentally accessible features. For applied dc voltages a Ks 8.61
sp_ontgneous polarization leads to a stablhzatl_on or a dest&jiscosities @, 18.1 kg
bilization of the planar ground statge., to an increase or 10 ms
decrease of the threshold for electroconvective instabilities a; -110.4
depending on whether the polarization is parallel or antipar- az -11
allel to the driving field. A generalized Frederiks transition ay 82.6
including torques due to the polarization is possible even for as 77.9
negative or vanishing dielectric anisotropy and its influenceDielectric constants €0 8.85 10-12 As
on the observation of pattern forming instabilities has been vm
discussed. Za//ZO ;?'83;8

For applied ac voltages the well-known conductive and 6” /60 5'25
dielectric regimes, which are governed by a harmonic move- - Lo )

. . .~ “Conductivities ol 5.6 P

ment of all variables at the onset of convection, are mainly 108 =—

- . . QOm
shifted to lower and higher thresholds, respectively, due to o, 3.7
the finite polarization. A different class of solutions, how- T, 1.9
ever, moving subharmonically at the onset, becomes possibleplarization Po 0...1 4, C
due to the polarization. Detailed investigations of the depen- 10 m2

dence on the parameters of this different regime give the
trends for which materials the subharmonic regime will oc-
cur most likely. The frequency range of the subharmonic

regime depends mainly on the polarization, dielectric and the APPENDIX B: dc ELECTROCONVECTION
conduction anisotropy as well as the widtof the film. The FOR € =0

major trends are: Moderate values of the polarization, small Tq analyze analytically the influence @, on EC, we

width d, small anisotropies of the conductivity, negative val- present here the neutral cur¥(q) for dc EC for free
ues of the dielectric anisotropy and small v_aluesmjf2 are  poundaries ane,=0. The ansat4.29 for ( of the general
favorable for the subharmonic regime. It is predicted thaiso|ytion Eq. (4.25 is reduced to three time-independent
electroconvection can also occur for negative anisotropy ofnctions Uo= (o, 00,05), i-€., |=0 in (4.28. For free
the conductivity due to the polarization. The possibility of anpoyndaries it is sufficient to take along only the lowest order
oscillatory Hopf bifurcation was considered in all numerical(mzl) in the space expansia#.29—(4.31). The general-
calculations but was never found for any parameter regime,qq eigenvalue probleid.36 for Re(s) =0 is then reduced

as discussed in Sec.VI D. _ _ _ to 0=L,- X, whereL, is a 3x 3 matrix. Nontrivial solutions
The nonlinear treatment of the various stationary bifurca—e optained for deg=0. From Eqs.(4.12—(4.14 we ob-
tions (especially near the codimension-three ppintll be  4i

the subject of future work, which will also include a fully
three-dimensional calculation taking into account film undu-

1/2
lations and the helical structure of the polarization. Finally V= pobz[_ t( %) } (B1)
we have made explicit suggestions for experiments to find 2b, Pob2
the subharmonic regime.
with
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APPENDIX A: MATERIAL PARAMETERS

All numerical calculations were done with material pa- One can easily see that the threshold exists as long as the
rameters listed in Table I, if not mentioned otherwise in theexpression under the square root stays positive, which is the
text. See Secs. VI C and VI D for further details. Note that incase forpab3> —4b;(1+q?K3/K,). For po=0, b; has to
this Appendix all quantities are given in real units and cor-be negative, which implies, to be positive. Ifp>0, even
respond to the unprimed quantities, e@.andpg. negative values o, are possible, where the critical value



6114

RIED, PLEINER, ZIMMERMANN, AND BRAND 53

for the conductivity anisotropy up to which dc EC exists, existence of the dc EC. This means, on the other hand, that

scales likeo,=—p3. In the general case of finite, the

there are parameter rangépositive and/or negativer,

formulas become more involved, but there is still a conditionand/ore,), where EC exists for large enougl, but not for

on the material parametefmainly onp,, o, ande,) for the

p0=0.
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