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We investigate the onset of electroconvection in freely suspended smectic-C* ~Sm-C* ) liquid crystal films.
Compared to nematic liquid crystals the Sm-C* phase shows in addition a macroscopic electric polarization
within the smectic planes. Describing the Sm-C* film by a two-dimensional theory we find for low and high
frequencies of the applied electric ac field, respectively, a conductive and a dielectric instability regime, similar
to the case of electroconvection in nematic liquid crystals. Because of the polarization in the Sm-C* phase an
additional, ‘‘subharmonic regime’’ appears at intermediate frequencies, where all the hydrodynamic and elec-
tric variables are moving with half the frequency of the applied ac voltage at the onset of convection. For some
special but experimentally accessible values of material parameters, geometric dimensions, and ac voltage
frequency also a codimension-three point is found, where the threshold voltages of all three possible regimes
coincide. For dc voltages the generalized Frederiks transition is presented and discussed as far as it restricts the
observation of pattern forming convective instabilities. Both types of instabilities are investigated for dc
voltages to get a fundamental insight into the mechanisms involved as well as for ac voltages to stimulate
experiments.@S1063-651X~96!00706-4#

PACS number~s!: 61.30.2v, 47.20.2k

I. INTRODUCTION

Over the last 20 years of enormous progress in pattern
formation, fluid systems have been used as variable model
systems, which allow for quantitative investigations far from
equilibrium ~see, e.g.,@1–3#!. In the last decade liquid crys-
tals became a paradigm of anisotropic fluids showing pattern
forming instabilities ~see, e.g.,@4–6#!. Electroconvection
~EC! in planarly aligned nematic liquid crystals is one of
these intensively investigated anisotropic systems@5–8#.

In chiral smectic liquid crystals~Sm-C* ) a macroscopic
polarization exists and Sm-C* can also be prepared as a
quasi two-dimensional~2D! free-standing film@9#, similar to
free-standing smectic A films@10#. Sm-C* is an example of
a complex fluid with additional macroscopic degrees of free-
dom, which give rise to different aspects in pattern forma-
tion. Here we describe a different convective instability and a
generalized Frederiks transition, which both are only pos-
sible due to the macroscopic polarization in Sm-C* . The
film geometry chosen will allow in future experimental in-
vestigations a detailed observation of the flow field, which is
not always possible for the EC in three-dimensional~3D!
nematic systems.

Most of the electroconvection experiments in liquid crys-
tals are performed on thin layers of nematics placed between
two transparent glass plates at a distance of about 2–200
mm. The orientational order in nematics, described by the
director@11#, can be fixed in those thin layers along specific
directions by preparing the surface of the glass plates in an
appropriate manner. Most often the director is aligned paral-
lel to the glass plates~planar geometry!. Applying a voltage
across the layer the convection sets in above a critical thresh-
old voltage and as a consequence of the optical anisotropy of

nematics the patterns can be visualized by using polarized
light.

Depending on the frequency of the applied voltage there
are two regimes, one at low frequencies~conductive regime!
and one at high frequencies~dielectric regime!, with differ-
ent thresholds and critical wavelengths for the cellular con-
vection pattern@8,11,12#. The former is explained by the
Carr-Helfrich mechanism@13#: Starting from a uniform
alignment of the director a small orientational fluctuation
parallel to the glass plates will induce for applied voltages
fluctuations of the charge density, since the electric conduc-
tivity is anisotropic as well. In the presence of an applied
electric field an inhomogeneous charge distribution leads to
mass flow, which is coupled to director rotations~flow align-
ment effect! amplifying the fluctuations under certain condi-
tions for the material parameters. This induced amplification
is hindered by the fluid viscosity~and the damping of direc-
tor rotations! as well as by the orientational elasticity of the
director and its fixed orientation at the glass plates. This
leads usually to a stationary bifurcation to convective rolls
with a wave numberqc at a certain threshold voltageVc .

At least for some standard substances like MBBA, which
shows a nematic phase at room temperature, all important
material parameters are known and the influence of the ex-
ternal electric and magnetic fields has been studied exten-
sively in theoretical and experimental work showing qualita-
tive agreement in many cases@5–8#. In contrast to Rayleigh-
Bénard convection~driven by a temperature gradient! in
isotropic simple or binary fluids, EC~driven by an electric
field! of the type discussed here needs an anisotropic fluid
with a rotational degree of freedom coupling the preferred
direction to the external field. In addition more control pa-
rameters are available, since not only the amplitude but also
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the frequency of the applied voltage can be varied and be-
cause material parameters can easily be tailored within a
wide range by mixing different liquid crystal compounds.

In addition to the standard 3D setup for electroconvection
in nematics a free-standing film is a promising candidate to
gain further insight into the mechanisms of electroconvec-
tion. Since free-standing films of nematics are not stable,
smectic liquid crystals films have to be used. In theC phase
the directorn is tilted with respect to the layer normal~ k!
and its projection onto the layer plane is called thec-director.
It can be treated as a vector, if all equations are made invari-
ant under the combined replacementsc→2c and k→2k.
For the 2D linearized hydrodynamic equations given below
this implies that thec director behaves like the director of
two-dimensional nematic liquid crystal. In the chiralC*
phase~Sm-C* ) a spontaneous polarization exists in each
layer ~changing its direction helically going from one layer
to the next!. Such a system has several advantages for EC:

~i! One can choose the geometry of a free-standing film in
a way that allows viewing along the direction, which cannot
be visualized in the standard 3D nematic setup~i.e., parallel
to the glass plates!. In freely suspended films the director
alignment and the convective flow can be monitored directly
using a polarizing microscope.~Sec. II!.

~ii ! The well defined onset of an instability can serve as an
additional means to measure some elastic and viscous mate-
rial parameters in smectic phases@14#, which cannot be ob-
tained directly.

~iii ! The macroscopic polarization in Sm-C* can be used
to modify the system by adding different amounts of chiral-
izing agents. It also provides an additional direct coupling to
the external field leading to different physical phenomena
~Secs. V and VI!.

~iv! Fluctuations of the tilt anglec of the directorn and
undulations of the film surface can give rise to different in-
teresting effects in pattern forming instabilities. In this com-
munication, however, such effects will not be considered.

Apart from the Carr-Helfrich mechanism~and its refine-
ments! for EC in anisotropic fluids, there is another mecha-
nism in fluids, based on surface charge layers~‘‘diffusion
layers’’!, that leads to electrohydrodynamic instabilities even
in isotropic fluids or isotropic films~i.e., thin smectic-A liq-
uid crystal films@10,15#! and to the ‘‘vortex mode’’ pattern
above threshold@10#. The influence of this mechanism on
EC at very low frequencies of the applied field will be dis-
cussed elsewhere. To distinguish the mode explained by
Carr-Helfrich from the ‘‘vortex mode’’ the former is some-
times called the ‘‘domain mode.’’

Since we are mainly interested in the effects of the film
geometry and of the macroscopic polarization on EC, we are
using here a simplified description assuming fixed smectic
layers~i.e., rigid film geometry!. As discussed in Sec. III the
Sm-C* phase, which is biaxial for film thicknesses small
compared to the pitch, has a larger number of coefficients
contained in the material tensors such as the tensors for elec-
tric conductivitys i j

E , for the dielectric tensore i j , for diffu-
sion, for the Soret effect, and for elasticity. However, we
neglect this in the following and describe a freely suspended
Sm-C* film as being isomorphic to a two-dimensional nem-
atic with an additional spontaneous electric polarizationP,
which is coupled rigidly to the in-plane directorc. Thus our

description is essentially a 2D nematic one with additional
terms in the macroscopic equations due to the polarization.
Basic equations are derived in Sec. III.

In Sec. IV a linear stability analysis of the convection-free
state is formulated. For applied ac voltages, mainly used in
experiments, numerical results are discussed in Sec. VI,
while for applied dc voltages a more analytic approach is
possible and discussed in Sec. V. The observation of pattern
forming instabilities is restricted in some cases by a homo-
geneous reorientation instability known as the Frederiks tran-
sition. We present a generalized ‘‘polarization Frederiks ef-
fect’’ including torques due to the spontaneous polarization
as well as to the dielectric anisotropyea . Such a reorienta-
tion instability from the planar ground state is now possible
for both signs ofea ~and even forea50). A detailed non-
linear analysis of the generalized Frederiks transition is
given in Ref.@16#.

The known results for nematics@11# are qualitatively un-
affected by the presence of the macroscopic polarization for
low and high frequencies of the applied electric ac field. At
intermediate frequencies, however, a different ‘‘subharmonic
regime’’ appears as the first unstable mode in Sm-C* . Its
threshold voltage increases with decreasing polarization. For
vanishing polarization this regime does not exist and is there-
fore not accessible in other liquid crystal phases such as
nematics or smecticC. Under certain conditions a
codimension-three point is found, where the three different
instabilities ~conductive, dielectric, and subharmonic, all
with different wavelengths and different temporal behavior!
compete at onset.

II. GEOMETRIES

The geometry of the physical situation of interest here is
sketched in Fig. 1. In contrast to the nematic phase the smec-
tic phases are organized in layers. In the smectic-C phase the
director n is tilted by a fixed anglec relative to the layer
normal k. So the only hydrodynamic degree of freedom of
the director alignment is a rotationu aroundk. The projec-
tion of n onto the plane of the smectic layers is thec director,
which can be observed by polarized light normal to the layer.
Due to the existence ofk andc this phase is biaxial.

In contrast to the Sm-C phase the Sm-C* phase shows an
intrinsic twist of the director from layer to layer. This addi-
tional symmetry breaking (C2h C2 locally! allows micro-
scopic electric dipoles to form a spontaneous electric polar-
izationP, which lies in the planes~perpendicular to bothk
andc! and is twisted, too. We will neglect this twist in the
following thus assuming that the thickness of the freely sus-
pended film is small compared to the pitch of the helielectric
C* phase@9#, which is typically;1–10mm.

Thus we consider as the ground state~without applied
voltage! a homogeneous structure, where eachP andc have
on average one specific preferred direction, perpendicular to
each other. Since we assume the layers to be rigid, we can
use a 2D model to describe the system. The first and last few
layers ~at the free surface! might be deformed and might
form higher ordered smectic phases. We neglect those effects
here and consider their influence elsewhere.
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III. BASIC EQUATIONS

A systematic approach to electrohydrodynamics in liquid
crystals is presented in Ref.@18#. The origin of hydrody-
namic variables are either conservation laws or spontane-
ously broken symmetries. In the smectic-C phase transla-
tional symmetry along the layer normal and rotational
symmetry about the layer normal are broken and, thus, layer
displacement~along its normal! and in-plane rotations of the
c vector are the hydrodynamic variables in addition to those
~mass densityr, momentum densityg, and energy density
e) already present in isotropic liquids. Since the Carr-
Helfrich mechanism requires the presence of free charges,
electric charge (re) conservation has to be considered.

Since the film geometry we have in mind is approxi-
mately a 2D situation, we already reduce the full three-
dimensional formulation of the equations to a two-
dimensional one. We follow the notation of Refs.@19–22# to
write down the conservation of charge and momentum as
well as the director balance equation~incompressibility as-
sumed!. In the following we assume isothermal conditions
and a single component liquid crystal.

The in-plane spontaneous polarizationP

P5p0~sinu,0,2cosu! ~3.1!

is always perpendicular to thec director

c5~cosu,0,sinu!, ~3.2!

where the angleu describes the orientation within the film
plane. Thec director is the projection of then director

n5~sinc cosu,cosc,sinc sinu!, ~3.3!

where the anglec describes the tilt ofn with respect tok.
The charge conservation is described by

] tre1divj50, ~3.4!

where] t is the partial time derivative. The electric current
density results from the convective charge transport~due to
the velocity fieldv i), from conduction~due to the electric
field E!, and from~dissipative! dynamic flexoelectricity@due
to the molecular field, cf. Eq.~3.13! below#

j i5rev i1s i j
EEj1¹ j~zk j i

E hk!. ~3.5!

The electric conductivity is one of the symmetric second
rank material tensors, which in Sm-C ~and Sm-C* locally!
have four different components

s i j
E5s1kikj1s2~d i j2kikj !1s3ninj1

1
2s4~nikj1njki !.

~3.6!

In our 2D description only two coefficients are relevant and
all the second rank material tensors are of the form

s i j
E5s'd i j1sacicj5s'd i j

tr1s icicj , ~3.7!

where d i j
tr[d i j2cicj and sa[s i2s' , with s'5s2 and

sa5s3sin
2c. For the structure of the dynamic flexoelectric

tensorz i jk
E see Ref.@18#.

The ~Legendre transformed! electric energy density is
given by

f e52 1
2 e i j EiEj2PiEi1ẽk j iEi¹kcj , ~3.8!

from which the dielectric displacement is obtained as a sum
of the field contributionEi , the spontaneous polarization
Pi , and the static flexoelectric part~the latter will be ne-
glected below!

Di52
d f e
dEi

5e i j Ej1Pi2ẽk j i¹kcj . ~3.9!

The electric field itselfE5E02“f can be decomposed into
the external fieldE 0 ~along thez direction in the following!
due to the applied voltageV

E0~ t !5
V~ t !

d
with V~ t !5V0a~ t ! ~3.10!

and the gradient of the induced electric potentialf. This
fulfills the first quasistatic Maxwell equation curlE50, while
the second one, divD5re can be used to eliminatere from
Eq. ~3.5!.

The balance equation of the director@19,20,22# is written
here in the 2D form

ċi1Yi50. ~3.11!

The quasicurrentYi contains a reactive part due to flow and
a dissipative part due to gradients ofc andE and Eq.~3.11!
reads

FIG. 1. ~a! A stack of Sm-C* layers is shown, for which the
orientation of the directorn changes from layer to layer gradually.
~b! Similarly to experiments with Sm-A films @17# we suggest the
sketched experimental setup for the study of electroconvection in
Sm-C* -films. A rectangular freely suspended Sm-C* film is plot-
ted with the electrodes parallel to thex direction. The length of the
film is assumed to be much longer (ix) than wide (iz).
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] tci1~v•¹!ci5z i jk
E ¹ jEk1d ik

tr F12 ~11l!cj¹ jvk

1
1

2
~l21!cj¹kv j1

1

g1
hkG , ~3.12!

showing a coupling of director rotations to rotational flow, to
elongational flow~via the dimensionless flow alignment pa-
rameterl) and to the molecular fieldhi ~via the the rota-
tional viscosity g1). The dynamic flexoelectric effect
(;z i jk

E ) will be neglected below. The molecular fieldhi is
the variational derivative of the free energy densityf ,

hi52
d f

dci
52

] f

]ci
1¹ j

] f

]¹ j ci
, ~3.13!

with f5 f F1 f e the sum of rotational elasticityf F , @11#

f F5 1
2K1~divc!

21 1
2K2~c•curlc!

21 1
2K3~c3curlc!2,

~3.14!

and the electric energy densityf e from Eq. ~3.8!. The mo-
mentum conservation,

rm„] t1~v•“ !…v i5¹ l~s i l
R1s i l

D!1~“•D!Ei , ~3.15!

includes the electric volume force on induced and spontane-
ous polarizations in the media due to the definition of the
dielectric displacement in Eq.~3.9!. The reversible part of
the stress tensor is

s i j
R52pd i j2

1
2 ~@l11#d ik

tr cj1@l21#d jk
tr ci !hk ,

~3.16!

wherep is the hydrostatic pressure. The irreversible part of
the stress tensor is@20#

s i j
D52n2Ai j1 2~n11n222n3!cicjckclAkl1 2~n32n2!

3~Aikckcj1Ajkcick!1~n52n41n2!d i j ckclAkl ,

~3.17!

where 2Ai j5¹ iv j1¹ jv i has been used and incompressibil-
ity,

divv50, ~3.18!

has been assumed. The thermal degree of freedom will be
neglected, since generally it does not play a role in EC.

IV. LINEAR ANALYSIS

A. Linearized equations

In the following we will investigate the linear stability of
the homogeneous and convection-free planar basic state
u50, v50 andf50 ~i.e., c is in x andE 0 in z direction!,
which is stable at voltagesV below a certain threshold value.
Therefore we linearize our system of equations around the
basic state and consider the dynamics of the small deviations
u, v, andf. Due to the 2D description there are no gradients
in they direction and all vector fields have vanishingy com-
ponents~i.e., vy50). The componentvx is expressed byvz

via the incompressibility condition~3.18!. The pressure is
obtained by taking the divergence of Eq.~3.15!, but it will
not be needed.

We consider a film that is infinitely extended in thex
direction ~or periodic boundary conditions! and we can
therefore treat thex dependence of the linearized equations
of motion by a Fourier ansatz

f~x,z,t !5sin~qx!f̃~z,t !,

vz~x,z,t !5sin~qx!ṽz~z,t !, ~4.1!

u~x,z,t !5cos~qx!ũ~z,t !.

After some straightforward algebra we obtain three linear
equations of motion for the fieldsf̃(z,t), ṽz(z,t) and
ṽ z(z,t). Dropping the ‘‘tilde’’ for simplicity the equation
corresponding to the charge conservation for example is:

~e iq
22e'¹z

2!] tf2@eaE0~ t !2p0#q] tu

1~s iq
22s'¹z

2!f2$ea@] tE0~ t !#1saE0~ t !%qu50.
~4.2!

In order to rewrite the equations in a dimensionless form we
rescale all lengths by the film widthd, i.e.,

x5x8
d

p
. ~4.3!

While frequently time is scaled by the charge relaxation time
e' /s' , we choose instead the following rescaling for time,
voltage, and mass density, respectively,

t5t8t05t8
g1d

2

K1p
2 , ~4.4!

V5V8pSK1

e'
D 1/2, ~4.5!

rm5rm8
g1
2

K1
~4.6!

so, if the film widthd is varied, only rescaled conductivities
s'8 ,s i8, andp08 must be changed~cf. Sec. VI D!.

For the variables this implies the dimensionless~primed!
forms

f85fS e'

K1
D 1/2

, ~4.7!

vz85vz
g1d

K1p
, ~4.8!

u85u, ~4.9!

while q, ¹z, and] t scale inversely to Eqs.~4.3! and ~4.4!,
respectively. In order to simplify the resulting equations we
introduce the dimensionless abbreviations

s i ,'8 5s i ,'
d2

p2

g1

e'K1
, ~4.10!
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p085p0
d

p
~e'K1!

2~1/2!. ~4.11!

Dropping the primeseverywherefor notational simplicity,
the linearized dimensionless equations then read

05S e i

e'

q22¹z
2D ] tf1S 2

ea
e'

V~ t !1p0Dq] tu

1~s iq
22s'¹z

2!f1S 2
ea
e'

@] tV~ t !#2saV~ t ! Dqu,

~4.12!

052] tu1S p02 ea
e'

V~ t ! Dqf2
1

q
~a2q

21a3¹z
2!vz

1S ea
e'

V2~ t !2p0V~ t !2
K3

K1
q21¹z

2D u, ~4.13!

05rm~q22¹z
2!] tvz1q~a2q

21a3¹z
2!] tu

1S ¹z
22

e i

e'

q2Dq2V~ t !f1S ea
e'

V2~ t !2p0V~ t ! Dq3u
1~hcq

422ĥq2¹z
21hb¹z

4!vz . ~4.14!

In Eq. ~4.14! the molecular fieldhi has been eliminated
via Eq.~4.13!. The external fieldE0 has been replaced by the
external applied voltageV, with V5E0 for dimensionless
quantities. In addition we have used the abbreviations~in
order to make contact with the notation in nematic EC! in the
dimensionless rescaling:

2a25212l,

2a3512l,

hb5
n3
g1

1
1

4
~12l!2, ~4.15!

hc5
n3
g1

1
1

4
~11l!2,

ĥ5
1

g1
~n11n22n3!1

1

4
~12l2!.

We are left with three homogeneous linear partial differential
equations foru, vz and f. They are similar to the linear
equations for planarly aligned nematic liquid crystals
@12,23#, but contain, in addition, the effects of the polariza-
tion p0 . Equations~4.12-4.14! can be written in matrix form,

B~ t,¹z!•] tu~z,t !5L~ t,¹z!•u~z,t !, ~4.16!

with the ~formal! vector field:

u5~f,u,vz!. ~4.17!

We always assume dc or periodic ac driving voltages. For
periodic voltagesV(t)5V(t1T), with T52p/v, the matri-
cesB andL are periodic in time and Eq.~4.16! shares some

similarities with the well known Matthieu equations. In the
following we assume additionally

V~ t1T/2!52V~ t !. ~4.18!

B. Boundary conditions

We consider films infinitely extended inx direction ~or
take periodic boundary conditions!. In z direction the film is
confined between electrodes located atz56(p/2), with the
following consequences. The velocityvz perpendicular to the
electrodes has to vanish at this surface:

vzS 6
p

2 D50 . ~4.19!

In addition stress-free boundary conditions,

]z
2vzS 6

p

2 D50 , ~4.20!

or rigid boundary conditions

]zvzS 6
p

2 D50, ~4.21!

are assumed, where the latter case is closer to the real ex-
perimental conditions.

At the surface we assume the directorc to lie, on average,
in one direction@c5(1,0,0)# and the induced potential to be
zero:

uS 6
p

2 D50, fS 6
p

2 D50 . ~4.22!

C. Symmetries and Floquet analysis

The solutions of the linearized Eqs.~4.12–4.14! can be
classified with respect to their symmetry properties under
spatial reflections and translations in time. Choosing the line
z50 to be the middle of the film, i.e.,2p/2,z,p/2, where
p is the rescaled film width in Fig. 1, Eq.~4.16! is invariant
under a reflection with respect to thez direction.

z→2z. ~4.23!

This symmetry of the equations together with the boundary
conditions chosen allows us to characterize all solutions to
be either symmetric u(z)5u(2z), or antisymmetric,
u(z)52u(2z), with respect toz. This would not be pos-
sible, if we had kept the flexoelectric effect related toẽi jk in

Eqs. ~3.8! and ~3.9! @12# and its dynamic analog;z i jk
E in

Eqs.~3.5! and ~3.12!.
For periodic voltages as given in Eq.~4.18!, the linear

homogeneous Eq.~4.16! is invariant under the time transla-
tions:

t→t1nT ~n integer, positive!. ~4.24!

According to the spectral method of Floquet@24# this
leads to a general solution of the form

u~z,t !5û~z,t !est, ~4.25!
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with the Floquet exponents and the periodic functionû.
Due to the symmetry~4.24! the solutionsû are grouped ac-
cording to the integersn into harmonic ones (n51), subhar-
monic ones (n52), etc. The harmonic ones are invariant
under a singleT-translation t→t1T, i.e., û(t)5û(t1T),
while the subharmonic ones change signû(t)52û(t1T)
under that translation. The full solutionsu(t) do not have
these symmetries because of the Floquet multiplier exp(st).
However the prefactors produced by a time translation, i.e.,
exp(sT) for a T translation, are irrelevant, since the ampli-
tudes of the solutionsu(t) are not determined by the linear,
homogeneous equation~4.16!.

The Floquet exponents is a function of the external
(V0 , v) and internal~material! parameters of the system and
depends on the transverse wave vectorq. It governs the lin-
ear stability of the basic, nonconvective state against inho-
mogeneous perturbationsu, which is stable, if Re(s),0,
and unstable for positive growth rates Re(s).0. Thus from
the condition

Re@s~V0 ,q, . . . !#50 ~4.26!

the parameters can be determined which separate the linear
stable regime from the unstable one. Equation~4.26! allows
for instance the determination ofV0 as a function ofq, the
so-called neutral curveV0(q) at which the real part of the
Floquet exponent changes its sign. The absolute minimum of
V0(q), Vc5V0(qc), gives the threshold for the onset of con-
vection in linearized stability analysis.

For vanishingp0 ~Sm-C phase! as well as forT periodic
and antisymmetric ac voltages@cf. ~4.18!#, e.g., sinusoidal,
square, or triangular wave forms, there is an additional sym-
metry with respect to time translations, since Eq.~4.16! is
invariant under the replacement,

t→t1
T

2
, if S f

u

vz
D→6gS 2f

u

vz
D , ~4.27!

whereg is an irrelevant constant. This symmetry requires the
solutionsû to be harmonic, since by applying~4.27! twice
~i.e., after aT translation! û is mapped to itself. Thus, if Eq.
~4.27! is valid, subharmonic solutions are ruled out. The up-
per and lower signs in~4.27! belong to two different solu-
tions, corresponding to the so-called conductive and dielec-
tric regime, respectively, known from EC in nematic liquid
crystals @11#. In Sm-C* however, this symmetry~4.27! is
lifted, sincep0Þ0. In that case subharmonic solutions are
possible and the two harmonic regimes can still be discrimi-
nated, but they are no longer purely ‘‘conductive’’ nor
purely ‘‘dielectric.’’

D. Mode ansatz

For the actual determination of the eigenvaluess we
transform Eq.~4.16! into a system of linear algebraic equa-
tions by choosing an appropriate representation of the peri-
odic part of the solution~4.25! function, û(z,t). Most often,
û is assumed to have the same period as the driving voltage.
However, bifurcation tonT-periodic solutions (n integer,
.1) is also possible, where generally only the subharmonic

~period doubled! casen52 gives stable solutions@24#. In
this state the basic time translational symmetryt→t1T is
broken spontaneously. Therefore, we make the ansatz

û5 (
l52N

N

ul~z!expS i l v

2
t D . ~4.28!

which contains both, theT-periodic, harmonic (l562), and
the 2T-periodic, subharmonic (l561) solutions as well as
all their higher harmonics (l 5 even or odd, respectively!
and even time independent ones.

The dependence onz is expressed by a complete set of
orthogonal functions according to the boundary conditions
chosen. Thez dependence off(z) as well asu(z) can be
described appropriately by an expansion with respect to
trigonometric functions:

f m~z!5H cos~mz!, m51,3,5, . . .

sin~mz!, m52,4,6, . . .
. ~4.29!

Each of it fulfills the boundary conditions in Eq.~4.22!.
For stress-free boundary conditions~4.20! this expansion is
also appropriate for the velocity fieldvz(z) and Eq.~4.16! is
solved by

û5 (
l52N

N

(
m51

M

UlmexpS i l v

2
t D f m~z!. ~4.30!

The ~vector! coefficient matrixUlm5(Plm ,Tlm ,Glm) con-
sists of three components according to the three components
of û5(f,u,vz).

For rigid boundary conditions the ansatz$ f m(z)% for the
velocity field does not satisfy Eq.~4.21! and has to be re-
placed by symmetric and antisymmetric Chandrasekhar
functions@10,25#,

rm~z!5H cosh~lmz/p!

cosh~lm/2!
2
cos~lmz/p!

cos~lm/2!
, m51,3, . . .

sinh~lmz/p!

sinh~lm/2!
2
sin~lmz/p!

sin~lm/2!
, m52,4, . . . ,

~4.31!

where inlm the roots of the characteristic equations

tanh~l/2!1tan~l/2!50 l1 ,l3 , . . . , ~4.32!

coth~l/2!2cot~l/2!50 l2 ,l4 , . . . , ~4.33!

are collected in an alternating manner. This leads to rigid
boundary conditions instead of~4.30! to the ansatz forvz :

vz~x,z,t !5est (
l52N

N

(
m51

M

GlmexpS i l v

2
t D rm~z!.

~4.34!

Inserting the mode expansions~4.28! and/or ~4.34! into
the linearized equation~4.16! and projecting onto the respec-
tive eigenmodes exp(il v/2 t)rm(z) and exp(il (v/2 t)fm(z), we
obtain algebraic equations linear in the coefficients
Plm ,Tlm ,Glm .
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Defining a 3M (2N11)-dimensional vectorX containing
all components ofU lm in an arbitrary sequential order, e.g.,

X5~P2N,1 ,P2N11,1, . . . ,PN,1 ,P2N,2 ,P2N11,2, . . . ,

PN,2 , . . . , . . . ,PN,M ,T2N,1 , . . . , . . . ,

TN,M ,G2N,1 , . . . , . . . ,GN,M !, ~4.35!

the set of linear algebraic equations is of the following sym-
bolic form:

sB1•X1 ivB2•X5L1•X. ~4.36!

Here the matricesB 1 , B 2 andL 1 are 333 block matrices,
where each block itself is aM (2N11)3M (2N11) matrix.
The matricesB 1 andL 1 result fromB andL from Eq.~4.16!,
respectively, whileB 2 contains elements of both,B andL,
because of the explicit time derivative of the external voltage
contained in Eq.~4.12!.

Since mixed projection integrals of even and odd func-
tions in space or in time, respectively, vanish identically, the
system ~4.36! will only contain equations coupling even
components to each other and odd components to each other.
In the time expansion even and odd corresponds to harmonic
and subharmonic modes while in the expansion in thez di-
rection even components are linked to antisymmetric func-
tions and odd ones to symmetric functions@cf. Eq.
~4.29,4.31!#. Thus the eigenvector of a marginally stable
mode contains components out of one of the following
modes only:

X5$~Uharm,anti!,~Uharm,sym!,~Usubh,anti!,~Usubh,sym!%.
~4.37!

In Eqs. ~4.28,4.30,4.34! we have already truncated the infi-
nite sums to finite ones taking into account only 2N11 tem-
poral andM spatial modes. This approximation is justified as
the amplitude of the corresponding components decreases
extremely fast forN.8 andM.6 ~the Galerkin approxima-
tion!. All matrices depend on the yet undetermined trans-
verse wave vectorq and on the amplitudeV0 of the applied
voltage, which we will take as sinusoidal,V(t)5V0cos(vt)
or constant,V(t)5V0 , in the following.

V. dc INSTABILITIES

Before presenting the results for applied ac voltages in
Sec. VI, we will discuss the special case of a time-
independent applied voltageV(t)5V0 . Although experi-
mentally less important than the ac case, because of charge
injection problems, it nevertheless is simple enough to dis-
cuss the influence ofp0 on the nature of the instabilities.

A. dc polarization Frederiks effect

In addition to EC instabilities (qcÞ0), nematic liquid
crystals can also become unstable against a purely orienta-
tional instability, if subject to external electric~or magnetic!
fields. This well-known Frederiks transition@11,26# has the
minimum of the neutral curve atqc50, describing a static
reorientation of the director~which is homogeneous in the
x direction! without any flow. The mechanism is based on
the dielectric~or magnetic! susceptibility anisotropy, which

favors an alignment of the director field parallel or perpen-
dicular to the applied field depending on the sign of the
susceptibility anisotropy (ea.0 or ea,0), while orienta-
tional elasticity works to preserve the original orientation of
the director field.

This type of instability is also present in smectic-C films
(p050) and the critical voltage for an electrically driven
splay Frederiks transition can be obtained from Eq.~4.13!
with q5vz5f50 andu5 ū cos(z) reading~in our dimen-
sionless units!

Vc
25e' /ea . ~5.1!

A threshold value and therefore an electrically driven
splay Frederiks transition exist only for finite positive values
of ea , since in our basic statec'E.

In this case (p050) the sign of the dc voltage is arbitrary,
since an applied electric fieldE is completely equivalent to
2E. Thus the threshold for the splay Frederiks instability
depends onV0

2 only. This behavior is changed qualitatively
in smectic-C* due to the presence of the polarizationP.
There is an orientational effect of the field on the polariza-
tion andE parallel toP (V0.0) is energetically preferred to
the caseE antiparallel toP (V0,0) ~cf. Fig. 1!. Thus, even
for vanishing dielectric anisotropy,ea50, one finds an ori-
entational transition of the Frederiks type~‘‘polarization Fre-
deriks effect’’! at the thresholdVc521/p0 . This instability
only occurs, if the spontaneous polarization and the applied
electrical field are antiparallel to each other (V0,0).

In the general case, i.e., for finite values ofp0 and ea ,
both orientational torques are present and the threshold for-
mula of the general Frederiks instability (f5vz5q50) due
to an applied dc voltage is

V5
e'p0
2ea

F16S 114
ea
p0
2e'

D 1/2G . ~5.2!

This formula contains both, the traditional splay Frederiks
effect ~due to dielectric torques! and the new ‘‘polarization
Frederiks effect’’~due to ferroelectric torques!. Since polar-
ization and director are rigidly coupled, both effects can ei-
ther enhance each other~for V0,0 andea.0) and therefore
reduce the threshold voltage@cf. the lower dotted line in Fig.
2~b!#, or counteract each other~for V0.0 and ea.0) in-
creasing the threshold voltage@cf. the upper dotted line in
Fig. 2~b!#.

In contrast to the traditional splay Frederiks transition that
does not exist forea,0, the general Frederiks transition can
exist even forea,0, if V0,0 ~external field antiparallel to
the polarization! and if p0 exceeds a critical valuep0.pc ,
where

pc5~24ea /e'!1/2. ~5.3!

In that case the destabilizing effect due to the polarization
overcomes the stabilizing effects due to the dielectric anisot-
ropy. This range is shown in Fig. 3~b!, where below the
dotted curve the planar initial configuration is unstable
against homogeneous reorientation of the director field.
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B. dc electroconvection

The existence of a finite polarization also has a profound
influence on the dc electroconvective instability. Without a
polarizationp0 ~smectic-C phase! the sign of the dc voltage
is arbitrary and the threshold for the dc EC depends onV0

2

only. This behavior is changed by the presence of the polar-
ization P in smectic-C* . Now E parallel toP (V0.0) is
energetically preferred to the caseE antiparallel to P
(V0,0) ~cf. Fig. 1! indicating that the basic state is more
stable in the former situation than in the latter one. Thus, one
can expect the dc EC threshold to increase~decrease! with
p0 for V0.0 (,0), which indeed has also been found nu-
merically for rigid boundaries@cf. the solid curves in Figs.
2~b! and 3~b!#.

This can also be understood analytically. Assuming sta-
tionary instabilities~a Hopf bifurcation has not been found in
our numerical studies!, we get a quadratic equation for
V0(q), i.e., b1V0

21b2p0V01b350, which is written down
explicitly in Appendix B for the special caseea50 and the
stress-free boundary conditions. The interesting point is that

it contains a linear term proportional top0 . Thus, in contrast
to the smectic-C case, in the smectic-C* phase the neutral
curve for dc EC is no longer symmetric with respect to
V0→2V0 .

This simple threshold condition also explains, why for
finite p0 values the range of existence of the dc EC is larger
than for zerop0 . Real values forVc are only possible, if
p0
2b2

2.24b1b3 . Thus for zerop0 the productb1b3 must be
negative, while for large enoughp0 also positive values of
b1b3 lead to an instability threshold. In particular, for a large
enough and destabilizing polarization~E antiparallel toP,
V0,0), an electroconvective instability is possible, even if
ea<0 andsa,0. In this situation the planar basic state is
stable within the simple Carr-Helfrich mechanism (p050),
but the destabilization due top0 overcomes the stabilization
due to negative dielectric and conductive anisotropies.

C. dc electroconvection vs Frederiks transition

To predict the behavior of a smectic film under external
electric fields, one has to take into account both, a Frederiks
type (qc50) and an EC instability (qc.0).

FIG. 2. ~a! The neutral curve forea510.6e0 without polariza-
tion (p050) and with a polarizationp050.2 andp050.5 parallel
to the applied field (V0.0). In ~b! the threshold of electroconvec-
tion ~solid lines! is compared with the that of the Frederiks transi-
tion ~dotted lines! as a function of the polarization~for the positive
value ofea50.6e0).

FIG. 3. The neutral curve~a! and the comparison of convective
and Frederiks instabilities~b! just like in Fig. 2 but for negative
dielectric anisotropyea520.38e0 , wherepc50.54.
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For p050 and large positive values ofea the splay Fred-
eriks transition always has a lower threshold than electrocon-
vection~see, e.g., Ref.@23#!. However, the threshold for the
splay Frederiks transition diverges in the limitea→0, but
below an intermediate~i.e., crossover! value ofea EC has a
lower threshold than the Frederiks transition.

For finite p0 the competition between both instabilities is
shown in Figs. 2 and 3 for positive and negativeea , respec-
tively. In these and the following figures the EC curves have
been calculated using realistic~rigid! boundary conditions,
but there are no qualitative differences to the case of free
boundary conditions.

For a positiveea and forV0.0 there are two minima in
the neutral curve@Fig. 2~a!#, where the EC threshold~at fi-
nite qc) is lower for large values ofp0 . In the case of
V0,0 and largep0 the minimum of the neutral curve at
finite qc ceases to exist and the~general! Frederiks transition
is the only possible instability. At small values ofp0 there is
a crossover between the Frederiks instability and EC, where
the two minima in the neutral curve correspond to the same
value ofV0 . At this codimension-two point the two instabili-
ties with qc50 and qc.0 coexist and nonlinearities, ne-
glected in the calculation of the threshold, will decide, which
structure actually survives. This is found numerically to take
place atpr50.25 andVc.0 for ea50.6e0 , while for a
smaller~but still positive! dielectric anisotropy this point is
shifted into the domain withVc,0.

A slightly different scenario is found in the rangeea,0.
If V0.0 or if V0,0 andp0,pc @defined in Eq.~5.3!#, there
is only EC and no Frederiks transition possible@cf. the
curvesp050 andp05pc20.04 in Fig. 3~a!#. Forp.pc ~and
V0,0) a Frederiks transition~minimum at q50) is pos-
sible, while EC~minimum at finiteq) seizes to exist forp0
slightly abovepc (p05pc10.07 in Fig. 3!. However, imme-
diately at the point, where the Frederiks transitions starts to
exist, it has a lower threshold than EC@cf. in Fig. 3~a! the
dashed, disconnected curve with two different minima#. Thus
the two threshold curves do not cross~no codimension-two
point! and atpc the ~absolute value of the! threshold voltage
jumps down from the EC value to the Frederiks value. Of
course, for a different choice of material parameters~e.g.,
sa or ea) the Frederiks threshold could be higher than the
EC threshold atpc leading at somepr.pc to a crossover
~codimension-two point! between EC and Frederiks transi-
tion quite similar to the case of positiveea .

VI. ac INSTABILITIES

A. Harmonic regimes

For p050 ~smectic-C phase! the harmonic solutions of
Eq. ~4.37!, l5even, (Uharm,anti,Uharm,sym) are each decom-
posed into two independent classes~called A and B in@12#!
representing the conductive and dielectric regimes, respec-
tively. This is due to the additional symmetry described by
Eq. ~4.27!, which implies that on one branch~A! the excited
modes are only the odd harmonic onesl52,6,10, . . . of the
electric variable f and the even harmonic ones
l50,4,8, . . . of the hydrodynamic variablesu andvz , and
vice versa for branch B. In the first case, the lowest mode at
the onset of instability consists of a harmonically oscillating

electric charge density while the hydrodynamic variables are
effectively constant. Therefore the regime is called conduc-
tive in agreement with the Carr-Helfrich explanation for the
nematic case. In the second, dielectric case, the excitation is
just the opposite with harmonically oscillating lowest modes
for the hydrodynamic variablesu andvz and a constant elec-
tric variablef ~in the lowest mode!.

For small values of the parameters'd
2 the higher order

~temporal! modes are considerably excited at the onset of
instability, as can be seen from Fig. 4. Increasings'd

2 there
remain large contributions from these higher harmonics only
near the transition from the conductive to the dielectric re-
gime @5,27#.

In Fig. 5 the neutral curves for the class (Uharm,sym), are

FIG. 4. The time dependence of the field variables is shown at
the onset of electroconvection in the Sm-C phase~without macro-
scopic polarization!. The temporal variations of the fields at the cell
center (z50) are plotted in arbitrary units for the conductive
(v5280) and dielectric regime (v5320).

FIG. 5. Neutral curvesV0(q) are given for two different values
of the polarization (p050 and 5) at the frequencyv5180 of the
applied voltage. The upper~lower! curve in the conduction regime
~dashed lines! and the lower~higher! one in the dielectric regime
~dotted lines! are calculated forp050 (p055). For finite polariza-
tions the additional subharmonic regime occurs at intermediate q
values~solid line!.
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plotted for two different values of the polarization,p050
and 5 at the frequencyv5180 of the applied voltage. For
vanishing polarization the neutral curve has two branches
with one minimum each, where the dashed curve belongs to
the conductive regime and the dotted curve to the dielectric
regime.

For finite values of the spontaneous polarization,p0 , the
symmetry of Eq.~4.27! no longer exists and all harmonic
modes are coupled. This means, for instance, that the even
harmonic modes (l52,6,10,. . . ) of the induced potential
f are also exited in the conduction regime. The amplitudes
of those additionally excited modes increase with increasing
values ofp0 . The same holds for the odd harmonic modes in
the dielectric regime. Similar changes occur for the two other
hydrodynamic variablesu andvz .

Despite the polarization induced excitations of even and
odd modes we still call the two regimes conductive and di-
electric, respectively, due to their origin. With increasing
values ofp0 the minimum of the neutral curve in the con-
duction regime~dashed! is shifted to lower, and the dielectric
one ~dotted! to higher, critical voltages and critical wave
numbersqc . For higher values ofp0 a new minimum of the
class (Usubh,sym) occurs~Fig. 5!, which will be discussed in
Sec. VI B.

For nematic liquid crystals it has been shown that the
branches belonging to~U harm,anti) have always a higher
threshold than those for~U harm,sym) ~see Refs.@8,12,27# and
references therein!. This is still true for finite polarizations in
the C* phase~Fig. 6!. In addition also the antisymmetric
subharmonic branch~U subh,anti) shows a higher threshold
voltage than the symmetric subharmonic one~U subh,sym).
Thus all the antisymmetric~dash-dotted! solutions are not
involved in the onset of convection and will not be consid-
ered any further.

B. Subharmonic ac regime

The subharmonic regime corresponds to the class
(U subh,sym) of solutions, where at the onset of convection all
variablesf, u, andvz are oscillating with half the frequency
( l51) and appropriate higher harmonics (l53,5,7,. . . ) of
the applied voltage. In this regime the temporal behavior of
the fieldsf,u,vz is shown in Fig. 7 at threshold and at the
cell center (z50). For the chosen parameter set higher har-
monics are considerably excited.

For p050 the subharmonic regime is strictly prohibited
by the symmetry~4.27!. The absence of this symmetry for
finite polarizations in turn allows for subharmonic solutions
~Figs. 5,6!, which break spontaneously the discrete time
translational symmetry of the driving voltage (T periodicity!,
since they are only 2T periodic ~subharmonic!.

Changing the frequencyv the three minima of the neutral
curve~Fig. 5! are shifted relative to each other, such that any
of them can be the absolute minimum, i.e., the threshold
Vc for a certain frequency range. The critical threshold volt-
ages,Vc(v) and the associated critical wave vectorsqc(v)
are plotted for each regime as a function of frequencyv in
Fig. 8 for two different values of the polarizationp0 .

For sufficiently high values ofp0 the neutral curve be-
longing to the subharmonic regime~U subh,sym) has the lowest
minimum for a certain frequency range~solid line in Fig. 8!.
It always appears at intermediate frequencies, between the
conductive and dielectric regime. Fig. 8~b! shows the critical
wave numberqc as a smooth function of the external fre-
quency within a given regime, but with discontinuous jumps
when the marginal stability switches from one regime to an-
other. Again only two regimes are present forp050, but
three for large enoughp0 .

Although there is no simple mechanism that could ex-
plain, why a subharmonic regime exists as the marginally
stable solution, the following remarks may help the intuition.
With p050 the sign ofV0 is undefined and it is ratherV0

2

FIG. 6. Three different instability regimes:~a! The conductive,
~b! the subharmonic and~c! the dielectric regime. The solid lines
show the neutral curvesV0(q) for branches symmetric underz
reflection Eq.~4.23! while the dash-dotted lines belong to antisym-
metric solutions. Here the parameters~applied ac frequency
v5180 and spontaneous polarizationp055) are chosen such that
the lowest minimum of the neutral curves belongs to the conductive
regime.

FIG. 7. The time dependence of the field variables is shown at
the onset of EC in the Sm-C* phase~with macroscopic polariza-
tion!. The fields at the cell center (z50) are plotted in arbitrary
units for the frequencyv5390 of the applied voltage. The dynam-
ics of the system is 2T periodic only, although the driving force
V(t) is T periodic.
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that governs the instability thresholds. A finitep0 , however,
introduces contributions linear inV0 as has been shown ex-
plicitly in the dc case~Sec. V!. Thus for sinusoidal voltages
V(t) the fields may oscillate either with half the frequency of
V(t)2 or V(t), depending on the influence of the different
destabilizing forces. For very large threshold voltages, such
as in the dielectric regime, contributions in the director re-
laxation time being quadratic in the voltageV2 win over
those effects linear inV. At small frequencies in the conduc-
tion regime the threshold is relatively small and the impurity
charges can follow the action of the external field immedi-
ately while leaving the director orientations roughly un-
changed. In both cases the fields oscillate in a subharmonic
fashion with respect toV2.

The frequency range of the conduction regime is always
bounded from above by the inverse charge relaxation time.
Beyond that frequency the charges get out of phase and if
immediately beyond that frequency the contributionsp0V to
the director relaxation time are more important than those
proportional toV2 then the subharmonic regime may have a

lower threshold than the dielectric one. With further increas-
ing frequency also the threshold increases and therefore at
large frequenciesV2 dominates theV effects and the dielec-
tric regime is favored. Using these qualitative arguments the
subharmonic regime can only occur as an additional regime
between the conduction and the dielectric regime.

C. Codimension-three bifurcation

The value ofp0 can be seen as a third control parameter
of the system in addition to the amplitude,V0 , and fre-
quency,v, of the applied voltage. For large polarizations the
subharmonic threshold curveVc(v) intersects both, the con-
ductive and the dielectric threshold curves, at two
codimension-two points~indicated in Fig. 8!. If p0 is low-
ered, these two codimension-two points approach each other
and finally merge~cf. Fig. 9!. We have found numerically
that this coalescence happens just at the point, where also the
conductive and dielectric thresholds intersect. This
codimension-three point is shown in Fig. 9 with the param-
eter valuesp354.5, v35361,V3541.5 and for the material
parameters given in Appendix A. Here all three regimes co-
exist and a competition of three solutions having different
wavelengths should be seen in experiments. Forp0,p3 the
subharmonic regime disappears.~The actual value ofp3 de-
pends obviously on the material parameters.! This scenario
seems to be generic, since near this codimension-three point
the threshold curvesVc(v) are nearly straight lines, where
the conductive and dielectric curve have the largest and
smallest slope, respectively.

Increasing however the polarizationp0 well beyondp3
the cutoff frequency of the conductive regime is shifted to
higher values and the threshold and critical wavelength at a
fixed frequency is lowered further. The subharmonic regime
appears always after the cutoff of the conductive regime for
high values ofp0 and is extended to much higher frequencies
at the cost of the dielectric regime. E.g., forp0550 the cut-
off frequency is atv'13000 while for the conductive re-
gime we find typically rather small threshold values

FIG. 8. Onset of instability: ~a! The critical voltages
Vc5V(qc), ~b! the critical wavelengthsqc , of the three regimes as
a function of the applied ac frequency. For low or vanishing polar-
ization p0 there are only two regimes, while forp0.4.5 ~for the
parameters chosen! there is in addition the subharmonic regime at
intermediate frequencies. At those frequencies, where the instability
switches from one regime to the other, the critical wave vector
shows a jump.

FIG. 9. Codimension-three point: At the minimal value of the
polarization (p054.5 for the parameters chosen!, for which the sub-
harmonic regime exists, the three different regimes have equal criti-
cal voltages at a certain external ac frequencyv3'361. This is a
codimension-three point.
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qc'0.15 andVc'0.5 atv5200. The observation of such
very small wave numbers should not be confused with the
Frederiks transition (q[0, which does not occur for
ea,0).

D. Parameter dependencies

The frequency range, where the subharmonic regime has
the lowest threshold, depends not only on the polarization
but also on the values of the other material parameters and
on the film width. To design an experiment for investigating
the subharmonic regime it is helpful to know, for which geo-
metric and material parameters the subharmonic regime can
be observed most likely. All results described in the previous
sections of this work have been calculated for the values
given in Appendix A. The electroconvective instability is
especially sensitive to changes in the electrical anisotropies
«a andsa @12,23,27,28#. Therefore we consider the influence
of variations of these quantities on the existence range of the
subharmonic regime.

~i! A scaling of the two dielectric constantse',i by the
same factor will only shift the threshold voltage due to Eq.
~4.5!. Large positive values ofea will not lead to EC (qc
Þ0), since the threshold for the Frederiks transition becomes
the lower one. Forea,0 changes ofe i /e' ~or ea /e') have
rather subtle implications, which cannot be understood from
the scaling of the Eqs.~4.12–4.14! alone, but numerical cal-
culations have to be used. Thus we have computed thresh-
olds curvesVc(v) with p055 for different values ofea ~cf.
Fig. 10!. The different regimes are separated by
codimension-two lines, which intersect at the codimension-
three point. The range of the subharmonic regime widens
with ea becoming more negative, while aboveea520.3 ~for
the parameters used! the subharmonic regime ceases to exist.

~ii ! We investigated the dependence onsa by keeping
s' constant and changing the value ofs i . Increasing values
of sa enforce the ability of space charges to follow the ap-
plied alternating field up to higher frequencies according to
the Carr-Helfrich mechanism@11,13#. Thus the cutoff fre-

quency of the conductive regime increases approximately
proportional tosa while the dielectric regime is only slightly
affected. This is shown forp050 by the dashed line in Fig.
11. Similar behavior is found for a finite polarization~solid
lines! although forsa /s',0.55~for the parameters chosen!
the subharmonic regime squeezes in between the two other
regimes. The threshold voltages of the conductive and the
dielectric regimes diverge by approachingsa→0 according
to the Carr-Helfrich mechanism causing smaller values of the
anisotropysa to favor the subharmonic regime. Furthermore
the subharmonic regime exists even for~slightly! negative
values of the anisotropysa . The same has been found for an
applied dc voltage~cf. Sec. V C!. Increasingp0 will again
lead to a larger frequency range of the subharmonic instabil-
ity and the subharmonic regime will exist to even larger
values ofsa than indicated in Fig. 11.

~iii ! In Sec. IV A the scaling was chosen such that varia-
tions of the film widthd do not change the~dimensionless!
viscosities and elastic constants, which are rather difficult to
vary experimentally. This means that mainly the same com-
pounds can be used for different film widthsd. On the other
hand the frequency of the applied AC voltage as well as the
spontaneous polarizationp0 ~by adding chiral molecules! or
the electric conductivitys ~by adding dopants! can easily be
adjusted in an experiment. I.e., the influence of the film
width d, showing up in the~dimensionless! quantities
s;d2, p0;d, andv;d2 @cf. Eqs.~4.4!, ~4.10!, and~4.11!#
can be balanced by appropriate changes of the physical quan-
tities. Varying both, the film width and the material param-
eters, the threshold voltage, the critical wavelength and the
frequency can be brought into a range accessible to experi-
ments.

VII. CONCLUSION

In this paper we have analyzed the linearized electrohy-
drodynamics of a freely suspended smectic-C* liquid crystal
film. We have neglected the biaxiality of this phase and have
described it as being isomorphic to a two-dimensional nem-

FIG. 10. The existence range of the subharmonic regime at vari-
ous ac frequenciesv as a function of the dielectric anisotropy for
p055 and s'5133 fixed @both in dimensionless units cf. Eqs.
~4.10! and ~4.11!# and e'55.25. The dashed line describes the
codimension-two line between the conductive and the dielectric re-
gimes forp050.

FIG. 11. The solid lines indicate the existence ranges of the
different instability regimes at various ac frequencies as a function
of the conduction anisotropysa for p055 and s'5133 and
e'55.25;ea520.38. The dashed line describes the codimension-
two line between the conductive and the dielectric regimes for
p050.
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atic with an additional spontaneous polarization. The quali-
tatively different effects due to the spontaneous electric po-
larization are the main topic of this work. We predict
electroconvection for thin smectic films as already known
from bulk nematics, but with some completely new and ex-
perimentally accessible features. For applied dc voltages a
spontaneous polarization leads to a stabilization or a desta-
bilization of the planar ground state~i.e., to an increase or
decrease of the threshold for electroconvective instabilities!
depending on whether the polarization is parallel or antipar-
allel to the driving field. A generalized Frederiks transition
including torques due to the polarization is possible even for
negative or vanishing dielectric anisotropy and its influence
on the observation of pattern forming instabilities has been
discussed.

For applied ac voltages the well-known conductive and
dielectric regimes, which are governed by a harmonic move-
ment of all variables at the onset of convection, are mainly
shifted to lower and higher thresholds, respectively, due to
the finite polarization. A different class of solutions, how-
ever, moving subharmonically at the onset, becomes possible
due to the polarization. Detailed investigations of the depen-
dence on the parameters of this different regime give the
trends for which materials the subharmonic regime will oc-
cur most likely. The frequency range of the subharmonic
regime depends mainly on the polarization, dielectric and the
conduction anisotropy as well as the widthd of the film. The
major trends are: Moderate values of the polarization, small
width d, small anisotropies of the conductivity, negative val-
ues of the dielectric anisotropy and small values ofsd2 are
favorable for the subharmonic regime. It is predicted that
electroconvection can also occur for negative anisotropy of
the conductivity due to the polarization. The possibility of an
oscillatory Hopf bifurcation was considered in all numerical
calculations but was never found for any parameter regime
as discussed in Sec.VI D.

The nonlinear treatment of the various stationary bifurca-
tions ~especially near the codimension-three point! will be
the subject of future work, which will also include a fully
three-dimensional calculation taking into account film undu-
lations and the helical structure of the polarization. Finally
we have made explicit suggestions for experiments to find
the subharmonic regime.
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APPENDIX A: MATERIAL PARAMETERS

All numerical calculations were done with material pa-
rameters listed in Table I, if not mentioned otherwise in the
text. See Secs. VI C and VI D for further details. Note that in
this Appendix all quantities are given in real units and cor-
respond to the unprimed quantities, e.g.,s andp0 .

APPENDIX B: dc ELECTROCONVECTION
FOR ea 5 0

To analyze analytically the influence ofp0 on EC, we
present here the neutral curveV0(q) for dc EC for free
boundaries andea50. The ansatz~4.28! for û of the general
solution Eq. ~4.25! is reduced to three time-independent
functions u05(f0 ,u0 ,vz0), i.e., l50 in ~4.28!. For free
boundaries it is sufficient to take along only the lowest order
(m51) in the space expansion~4.29!–~4.31!. The general-
ized eigenvalue problem~4.36! for Re(s)50 is then reduced
to 05L1•X, whereL1 is a 333 matrix. Nontrivial solutions
are obtained for detL150. From Eqs.~4.12!–~4.14! we ob-
tain

V5
p0b2
2b1

F216S 11
4b1b3
p0
2b2

2 D 1/2G , ~B1!

with

b15
sa

s'

q2
~a32a2q

2!~11q2!

~hcq
412ĥq21hb!~q

2s i /s'11!
, ~B2!

b25
saq

2

s iq
21s'

212
a2q

22a3

hcq
412ĥq21hb

q2, ~B3!

b3511q2K3 /K1 . ~B4!

One can easily see that the threshold exists as long as the
expression under the square root stays positive, which is the
case forp0

2b2
2.24b1(11q2K3 /K1). For p050, b1 has to

be negative, which impliessa to be positive. Ifp0.0, even
negative values ofsa are possible, where the critical value

TABLE I.

Parameter Symbol Value Unit

Elastic constants K1 6.66 10212 N
K2 4.2
K3 8.61

Viscosities a1 -18.1
1023 kg

m s
a2 -110.4
a3 -1.1
a4 82.6
a5 77.9

Dielectric constants e0 8.85
10212 A s

V m
ea /e0 -0.38
e i /e0 4.87
e' /e0 5.25

Conductivities s i 5.6
1028 1

V m
s' 3.7
sa 1.9

Polarization p0 0 . . . 1
1029 C

m2
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for the conductivity anisotropy up to which dc EC exists,
scales likesa}2p0

2 . In the general case of finiteea the
formulas become more involved, but there is still a condition
on the material parameters~mainly onp0 , sa andea) for the

existence of the dc EC. This means, on the other hand, that
there are parameter ranges~positive and/or negativesa
and/orea), where EC exists for large enoughp0 , but not for
p050.
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